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Optimal control problem

Let Ω ⊂ Rn (n = 2, 3) be a bounded Lipschitz domain with Γ = ∂Ω satisfying

ΓD∩Γc 6= ∅ and ΓN∩Γc = ∅. We consider an optimal Dirichlet boundary control

problem for the Navier–Stokes equations, see [2], given by:

Minimize the cost functional

J (u, z) :=
1

2
‖u− u‖2L2(Ω)

+
1

2
̺ |z|2H1/2(Γc)

(1)

under the constraint

−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ΓD,

ν(∇u)n− pn = 0 on ΓN,

u = z on Γc.

(2)

We realize the H1/2(Γc) semi–norm by the duality product

|z|2H1/2(Γc)
= 〈Sz, z〉Γc

,

for all z ∈ [H̃1/2(Γc)]
n, where S : [H̃1/2(Γc)]

n → [H−1/2(Γc)]
n is the so called

Steklov–Poincaré operator of the mixed boundary value problem of the vector

valued Laplace equation, see [2].

From the standard theory, see [4], we obtain for (1)–(2) the first order necessary

optimality conditions (optimality system).

Primal problem

−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ΓD,

ν(∇u)n− pn = 0 on ΓN,

u = z on Γc,

Adjoint problem

−ν∆w − (∇w)u− (∇w)⊤u−∇r = u− u in Ω,

∇ · w = 0 in Ω,

w = 0 on ΓD ∪ Γc,

ν(∇w)n + (u · w)n + (u · n)w + rn = 0 on ΓN,

Optimality condition

−ν(∇w)n− (u · w)n− (u · n)w − rn + ̺Sz = 0 on Γc.

Discretization

For our problem we apply a finite element method using finite dimensional

subspaces Vh ⊂ [H1
0(Ω, ΓD ∪ Γc)]

n and Qh ⊂ L2(Ω) of lowest order, e.g. P1–P1,

stabilized by the Dohrmann–Bochev method, see [1]. For that, the stabilization

term is given by

c(ph, qh) =
1

ν

∫

Ω

(ph − Πh ph)(qh − Πh qh) dx

with L2(Ω)–projection Πh : L2(Ω) → Q0
h.

The Galerkin matrix of the Steklov–Poincaré operator S is given by the Schur

complement of the stiffness matrix, i.e.

Sh = ACC − ACIA
−1
II AIC.

This representation makes the semi–norm easy to compute.

Numerical results

Let Ω = (0, 1)2, Γ = Γc with data u = (x2(x2−1)+1, x1(x1−1)+1)⊤, f = 1, ν = 1,

̺ = 1. We compare the errors for the L2(Γ) control and the H1/2(Γ) control.

L2(Γ) control H1/2(Γ) control

L
∥∥zh9 − zh

∥∥
L2(Γ)

eoc
∥∥zh9 − zh

∥∥
L2(Γ)

eoc

0 3.55102 e− 01 − 9.64011 e− 03 −
1 2.43439 e− 01 0.54 3.47652 e− 03 1.47
2 1.70947 e− 01 0.51 1.72964 e− 03 1.01
3 1.19022 e− 01 0.52 5.30675 e− 04 1.70
4 8.29968 e− 02 0.52 1.77762 e− 04 1.58
5 5.75723 e− 02 0.53 7.22122 e− 05 1.30
6 3.92801 e− 02 0.55 3.21299 e− 05 1.17
7 2.57017 e− 02 0.61 1.36679 e− 05 1.23
8 1.48376 e− 02 0.79 4.55947 e− 06 1.58

Table 1: Errors and estimated order of convergence for L2(Γ) and H1/2(Γ) control.

For the example above we obtain 0.6 order of convergence for the L2(Γ) control

and nearly 1.3 order of convergence for the H1/2(Γ) approach.

Application to arterial blood flow

We consider the control of the inflow in a real geometry aneurysm–bypass.

The blood flow is described by the Navier–Stokes equations, with Re ≈ 100

corresponding to the kinematic viscosity ν = 0.04, see [3].

We present the differences in numerical results for the control in L2(Γc) and the

energy space H̃1/2(Γc). More realistic flow behavior is obtained by the control

approach for the energy space H̃1/2(Γc).

Figure 1: Streamlines for L2(Γc) (left), and H̃1/2(Γc) (right).

Figure 2: Controlled inflow z for L2(Γc) (left), and H̃1/2(Γc) (right).
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