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Abstract. For selfadjoint operators A1 and A2 in a Pontryagin space
Πκ such that the resolvent difference of A1 and A2 is n-dimensional it
is shown that the dimensions of the spectral subspaces corresponding
to open intervals in gaps of the essential spectrum differ at most by
n + 2κ. This is a natural extension of a classical result on finite rank
perturbations of selfadjoint operators in Hilbert spaces to the indefinite
setting. With the help of an explicit operator model for scalar rational
functions it is shown that the estimate is sharp. Furthermore, the gen-
eral perturbation result and the operator model are illustrated with an
application to a singular Sturm-Liouville problem, where the boundary
condition depends rationally on the eigenparameter.

1. Introduction

Spectral theory of selfadjoint operators in indefinite inner product spaces is a
classical area of operator theory which is strongly influenced by the contribu-
tions of T.Ya. Azizov, I.S. Iohvidov, M.G. Krein, H. Langer, L.S. Pontryagin,
and many others. The monographs [4, 15, 36] provide a comprehensive intro-
duction and detailed overview on the main developments in this field until the
end of the eighties, and we also refer the reader there for further references
and historical information.

In this note we are mostly interested in a perturbation problem for
selfadjoint operators in Pontryagin spaces, which is a natural generalization
of a classical and very useful Hilbert space result. More precisely, let A1

and A2 be selfadjoint operators in a Pontryagin space Πκ with κ negative
squares and assume that the resolvent difference of A1 and A2 is a finite rank
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operator, that is, for some n ∈ N we have

dim ran
(
(A1 − λ0)−1 − (A2 − λ0)−1

)
= n (1.1)

for some (and hence for all) λ0 ∈ ρ(A1) ∩ ρ(A2). Assume, in addition, that
∆ ⊂ R is an open interval which is a gap of the essential spectrum of A1 or,
equivalenty, a gap of the essential spectrum of A2, and denote by eig(A1,∆)
and eig(A2,∆) the dimensions of the spectral subspaces of A1 and A2, respec-
tively, corresponding to ∆; cf. [37, 39, 40] for the construction and properties
of the spectral function. In our main result in Theorem 3.1 we prove the
estimate

| eig(A1,∆)− eig(A2,∆)| ≤ n+ 2κ, (1.2)

which also turns out to be optimal. We emphasize that in the special case
κ = 0 our result reduces to a standard fact in spectral and perturbation theory
of selfadjoint operators in Hilbert spaces: The dimensions of the spectral
subspaces corresponding to an open interval in a gap of the essential spectra
of two selfadjoint operators A1 and A2 in a Hilbert space such that (1.1)
holds differ at most by n, see, e.g. [14, Chapter 9.3, Theorem 3].

In order to show that the estimate in (1.2) is sharp we first provide an
explicit operator or matrix model for a special class of rational functions in
Section 4.1 which has been used in a similar context, but in a more abstract
form, also in the recent papers [8, 9]. We do not discuss the precise con-
struction via boundary triples, intermediate extensions and associated Weyl
functions here in the Introduction, but we wish to emphasize the follow-
ing interesting conclusion of the model: For a given set of pairwise distinct
real numbers µ1, . . . , µm and ν1, . . . , νm we explicitely construct a Pontryagin
space (Cm, [·, ·]) and two matrices A1 and A2 such that A1−A2 is a rank one
matrix (and hence also (1.1) holds with n = 1) and

σp(A1) =
{
µ1, . . . , µm

}
and σp(A2) =

{
ν1, . . . , νm

}
.

Here, A1 is a diagonal matrix and A2 is of a certain structured form, see
Section 4.1 for more details.

As an illustration of the general perturbation result Theorem 3.1 and
an application of the operator model in Section 4 we consider a λ-dependent
Sturm-Liouville boundary value problem of the type

−f ′′ + qf = λf, s(λ)f(0) + t(λ)f ′(0) = 0, (1.3)

on the half line [0,∞), where s and t are rational functions such that r = s/t
belongs to the special class of rational functions in Section 4, the potential
q ∈ L1

loc((0,∞)) is real valued, and the differential expression is regular at 0
and in the limit point case at∞. Such types of boundary value problems have
been considered in various works and different linearization techniques were
developed in the past; for references see Section 5. Here we use a coupling
technique for symmetric operators and associated boundary triples from [20]

to construct a linear operator Ã in a Pontryagin space L2((0,∞))×Cm such

that the eigenvalues of Ã coincide with the eigenvalues of the boundary value
problem (1.3). With the help of the operator model for the function r = s/t
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from Section 4.1 we are able to specify Ã explicitely. As implicitly mentioned
above, we are particularly interested in the eigenvalues of this linearization. In
addition to proving the already known fact that their geometric multiplicity
is one, we also obtain information on the signature of the complete root

subspace of isolated eigenvalues of Ã.

2. Preliminaries

A Pontryagin space with κ negative squares is an indefinite inner product
space (Πκ, [· , ·]) which admits a decomposition

Πκ = Π+ [u] Π−,

where [u] denotes the direct [· , ·]-orthogonal sum, (Π±,±[· , ·]) are Hilbert
spaces and dim Π− = κ. For a detailed treatment of Pontryagin spaces and
operators therein we refer to the monographs [4, 15] and [36].

For the rest of this section let (Πκ, [· , ·]) be a Pontryagin space with κ
negative squares. A (closed ) linear relation in Πκ is a (closed) linear subspace
of Πκ × Πκ. Linear operators in Πκ are viewed as linear relations via their
graphs. We shall usually omit the term “linear” and just speak of relations
and operators. For a relation A in Πκ the adjoint A+ is defined by

A+ :=
{
{h, k} : [g, h] = [f, k] for all {f, g} ∈ A

}
.

Note that A+ is always closed. A relation A in Πκ is called symmetric if
A ⊂ A+ and selfadjoint if A = A+.

For the algebraic notions and operations related to relations, such as
kernel, range, domain, multivalued part, as well as sum, product, and inverse,
we refer to [16, 34], and for a detailed study of symmetric and selfadjoint
relations in Pontryagin and Krein spaces we refer to [28, 29] and the references
therein. We only recall that the resolvent set ρ(A) of a relation A in Πκ is
defined as the set of all λ ∈ C such that (A − λ)−1 ∈ B(Πκ), where B(Πκ)
denotes the space of bounded and and everywhere defined operators in Πκ.
The spectrum of A is defined as the complement of ρ(A), i.e. σ(A) = C\ρ(A).
The point spectrum σp(A) of A is the set of all λ ∈ C such that ker(A−λ) 6=
{0}. For λ ∈ σp(A) the root subspace of A corresponding to λ is defined by
Lλ(A) :=

⋃
n∈N ker((A−λ)n). The dimension of Lλ(A) is called the algebraic

multiplicity of the eigenvalue λ.
If A is a selfadjoint relation in Πκ and ρ(A) 6= ∅ then we shall define

the essential spectrum σess(A) as the complement of the isolated eigenvalues
of A with finite algebraic multiplicities in σ(A). We also mention that the
spectrum of a selfadjoint relation in Πκ is always symmetric with respect to
the real axis, and in the case that A is an operator it follows that with the
possible exception of at most 2κ nonreal eigenvalues with finite multiplicities
σ(A) is real. In particular, we have ρ(A) 6= ∅ in this case; in general, for a
selfadjoint relation σ(A) = C is possible; cf. [28] and [6, Lemma 2.2] for more
details. Finally, we recall that a selfadjoint operator or relation A in Πκ with
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ρ(A) 6= ∅ admits a spectral function with the usual properties; cf. [37, 39, 40]
and [29].

3. Finite rank perturbations of selfadjoint operators in
Pontryagin spaces

In this section we formulate and prove a Pontryagin space variant of a well
known result on finite rank perturbations of selfadjoint operators in Hilbert
spaces; cf. Corollary 3.2. For this, we need some preparation. Let L ⊂ Πκ be a
subspace of Πκ which is also a Pontryagin space. Then we have L = L+[u]L−,
where (L±,±[· , ·]) are Hilbert spaces and dimL− ≤ κ. Since the dimensions
of L+ and L− do not depend on the particular decomposition of L (see, e.g.,
[15]), there is no ambiguity in defining the numbers

κ−(L) := dimL− and κ+(L) := dimL+.

Of course, we have κ+(L) =∞ if and only if L is infinite dimensional. Note
furthermore that we always have κ−(L) ≤ κ. The pair {κ+(L), κ−(L)} is
called the signature of L (with respect to the inner product [· , ·]).

Let A be a selfadjoint operator or a selfadjoint relation in the Pontryagin
space Πκ with ρ(A) 6= ∅, and let ∆ ⊂ R be an open interval such that
∆ ⊂ R \ σess(A). Then the closed linear span L∆(A) of all root subspaces
corresponding to the eigenvalues of A in ∆ is a Pontryagin space (see, e.g.,
[40]) and we call the integer

sig(A,∆) := κ+(L∆(A))− κ−(L∆(A)) (3.1)

the signature difference of (the spectral subspace of) A corresponding to ∆.
By eig(A,∆) we denote the dimension of L∆(A), that is,

eig(A,∆) := κ+(L∆(A)) + κ−(L∆(A)). (3.2)

The main result in this section is the following theorem.

Theorem 3.1. Let A1 and A2 be two selfadjoint operators or relations in a
Pontryagin space Πκ such that

dim ran
(
(A1 − λ0)−1 − (A2 − λ0)−1

)
= n (3.3)

for some (and hence for all ) λ0 ∈ ρ(A1) ∩ ρ(A2), and let ∆ ⊂ R \ σess(A1)
(or, equivalently, ∆ ⊂ R \ σess(A2)) be a nonempty open interval. Then the
following assertions hold.

(i) sig(A1,∆) is finite if and only if sig(A2,∆) is finite, and in this case∣∣ sig(A1,∆)− sig(A2,∆)
∣∣ ≤ n. (3.4)

(ii) eig(A1,∆) is finite if and only if eig(A2,∆) is finite, and in this case∣∣ eig(A1,∆)− eig(A2,∆)
∣∣ ≤ n+ 2κ. (3.5)
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Both estimates (3.4) and (3.5) are sharp and equality in (3.5) prevails if and
only if equality prevails in (3.4) and either

κ−(L∆(A1)) = κ and κ−(L∆(A2)) = 0

or

κ−(L∆(A1)) = 0 and κ−(L∆(A2)) = κ.

The following corollary for the case κ = 0 is well known in the pertur-
bation theory of selfadjoint operators in Hilbert spaces, see, e.g., [14, Chap-
ter 9.3, Theorem 3].

Corollary 3.2. Let A1 and A2 be two selfadjoint operators in a Hilbert space
such that

dim ran
(
(A1 − λ0)−1 − (A2 − λ0)−1

)
= n

holds for some (and hence for all ) λ0 ∈ ρ(A1) ∩ ρ(A2), and let ∆ ⊂ R \
σess(A1) (or, equivalently, ∆ ⊂ R \ σess(A2)) be a nonempty open interval.
Then eig(A1,∆) is finite if and only if eig(A2,∆) is finite, and in this case∣∣ eig(A1,∆)− eig(A2,∆)

∣∣ ≤ n.

The proof of Theorem 3.1 makes use of Lemma 3.3 below, in which the
following well known property of selfadjoint operators in Hilbert spaces is
extended to the Pontryagin space setting: For a bounded selfadjoint operator
T in a Hilbert space with scalar product (· , ·) we have (a, b) ⊂ ρ(T ) if and
only if

((T − a)x, (T − b)x) ≥ 0

for all x, and σ(T ) ⊂ [a, b] holds if and only if

((T − a)x, (T − b)x) ≤ 0.

for all x. This easily follows from the spectral theorem.

Lemma 3.3. Let A be a bounded selfadjoint operator in a Pontryagin space
Πκ and let a, b ∈ R, a < b. Then the following holds.

(i) If [a, b] ⊂ ρ(A) then Πκ admits a decomposition Πκ =M−uM+, such
that dimM− = κ,

[(A− a)x, (A− b)x] < 0 for x ∈M− \ {0},

and

[(A− a)x, (A− b)x] > 0 for x ∈M+ \ {0}.
(ii) If σ(A) ⊂ (a, b) then Πκ admits a decomposition Πκ =M−uM+, such

that dimM+ = κ,

[(A− a)x, (A− b)x] < 0 for x ∈M− \ {0},

and

[(A− a)x, (A− b)x] > 0 for x ∈M+ \ {0}.
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Proof. By a well known theorem of L.S. Pontryagin (see also [36, Theo-
rem 12.1′]) there exists a κ-dimensional nonpositive subspace L ⊂ Πκ which
is A-invariant. Making use of [36, Theorem 3.3] we find a negative subspace
L− ⊂ L such that L = L− [u]L◦, where L◦ = L ∩ L[⊥] denotes the isotropic
part of L. Evidently, L◦ is A-invariant. By [15, Theorem IX.2.5] or [36, The-
orem 3.4] there exist a subspace P0 ⊂ Πκ with dimP0 = dimL◦ and a
(uniformly) positive subspace M such that

Πκ = L− [u] (L◦ u P0) [u]M. (3.6)

Since L◦, L, and also L[⊥] = L◦ uM are A-invariant, with respect to the
decomposition

Πκ = L◦ u L− u M u P0

the operator A admits the following operator matrix representation:

A =


A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

 . (3.7)

It is easily seen that the operator A33 is selfadjoint in the Hilbert space
(M, [· , ·]). Let us now show that

ρ(A) ⊂ ρ(A22) ∩ ρ(A33). (3.8)

For this, denote by D the operator represented by the operator matrix in (3.7)
with the off-diagonal entries replaced by zeros. Then D is a finite-dimensional
perturbation of A. Hence, if λ ∈ ρ(A), then D−λ is a Fredholm operator with
index zero. Since A11−λ, A22−λ, and A44−λ operate in finite-dimensional
spaces, their Fredholm indices are zero, respectively, and hence so is that of
A33−λ. To prove (3.8), it thus remains to show that A22−λ and A33−λ are
injective. First, we note that A11 − λ is injective as A11 = A � L◦. Assume
that (A22 − λ)x2 = 0 for some x2 ∈ L−. Then, using (3.7), we see that

(A− λ)


−(A11 − λ)−1A12x2

x2

0
0

 = 0,

which shows x2 = 0. The fact that A33 − λ is injective can be shown in a
similar manner. This shows (3.8).

In both cases (i) and (ii) we have a, b ∈ ρ(A). Therefore, the inner
product

〈x, y〉 := [(A− a)x, (A− b)y], x, y ∈ Πκ,

defines a Krein space inner product on Πκ. In the following, we shall restrict
ourselves to the case (i). The proof of (ii) is similar. For m ∈M we have

〈m,m〉 = [A13m + (A33 − a)m, A13m + (A33 − b)m]

= [(A33 − a)m, (A33 − b)m].
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From [a− ε, b+ ε] ⊂ ρ(A) ⊂ ρ(A33) for some ε > 0 and the selfadjointness of
A33 in the Hilbert space (M, [· , ·]) we conclude that

[(A33 − (a− ε))m, (A33 − (b+ ε))m] ≥ 0,

and hence
〈m,m〉 ≥ ε(b− a+ ε)[m,m],

which shows that M is uniformly 〈· , ·〉-positive. Similarly, it is shown that
L− is 〈· , ·〉-negative. Moreover, L◦, L− andM are mutually 〈· , ·〉-orthogonal
and L◦ is 〈· , ·〉-neutral. The application of [36, Lemma 3.1] to the space L◦
(as a subspace of the Pontryagin space (M〈u〉L−)〈⊥〉) yields the existence
of a subspace P1 ⊂ (M〈u〉L−)〈⊥〉 such that P1 and L◦ are skewly linked; cf.
[36, Definition 3.2]. In particular, the space L◦ u P1 is non-degenerate,

dim
(
L◦ u P1

)
= dimL◦ + dimP1 = 2 dimL◦,

and 〈· , ·〉 has dimL◦ negative squares on L◦ u P1. According to (3.6) the
codimension of M〈u〉L− in Πκ is

dim
(
L◦ u P0

)
= dimL◦ + dimP0 = 2 dimL◦,

and hence we conclude

Πκ = L−〈u〉(L◦ u P1)〈u〉M.

From this decomposition we see that (Πκ, 〈· , ·〉) is a Pontryagin space with
κ = dimL negative squares. Hence, there exists a decomposition Πκ =
M−〈u〉M+, whereM− is κ-dimensional and 〈· , ·〉-negative andM+ is 〈· , ·〉-
positive. This implies (i). �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. (i) The proof of item (i) is divided into two steps.
In Step 1 we verify the assertion for the case that A1 and A2 are bounded
operators, ∆ is bounded and ∆ ⊂ R \ σess(A1), which is equivalent to ∆ ⊂
R \ σess(A2), since by assumption (3.3) the resolvents of A1 and A2 differ by
a finite rank operator. In the second step we show how the general case can
be reduced to these assumptions.

Step 1. Let ∆ = (a, b) be such that ∆ ⊂ R \ σess(Aj), j = 1, 2. We may
assume that a, b ∈ ρ(A1) ∩ ρ(A2). Denote by Ej be the spectral function of
the selfadjoint operator Aj . According to Lemma 3.3, for j = 1, 2 we have
the decompositions

(I − Ej(∆))Πκ =Mj
+,out u M

j
−,out and Ej(∆)Πκ =Mj

+,in u M
j
−,in,

with

dimMj
−,out = κ−((I − Ej(∆))Πκ) and dimMj

+,in = κ−(Ej(∆)Πκ)

such that

[(Aj − a)x, (Aj − b)x] < 0 for x ∈
(
Mj
−,out[u]Mj

−,in
)
\ {0},

and

[(Aj − a)x, (Aj − b)x] > 0 for x ∈
(
Mj

+,out[u]Mj
+,in

)
\ {0}.
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Evidently,

Πκ =
(
M1

+,out u M1
−,out

)
[u]

(
M1

+,in u M1
−,in
)
.

Let Q1 be the projection ontoM1
−,out [u]M1

−,in with respect to this decom-
position of Πκ. Moreover, set

K :=
(
M2
−,out [u]M2

−,in
)
∩ ker(A1 −A2).

We claim that the restriction Q1 � K of Q1 to K is one-to-one. Indeed,
suppose that there exists x ∈ K, x 6= 0, such that Q1x = 0. Then from
x ∈ (M2

−,out [u]M2
−,in) ∩ ker(A1 −A2) we deduce

[(A1 − a)x, (A1 − b)x] = [(A2 − a)x, (A2 − b)x] < 0.

But Q1x = 0 implies x ∈M1
+,out [u]M1

+,in and hence

[(A1 − a)x, (A1 − b)x] > 0;

a contradiction. Therefore, the restriction of the linear mapping Q1 to K is
one-to-one which yields dimK ≤ dim ranQ1, i.e.

dimK ≤ dimM1
−,out + dimM1

−,in

= κ−((I − E1(∆))Πκ) + κ+(E1(∆)Πκ).

This estimate and the fact that E1(∆)Πκ is finite dimensional also implies
that K is finite dimensional. On the other hand, as dim(Πκ/ ker(A1−A2)) =
n, it follows that

dimK ≥ dimM2
−,out + dimM2

−,in − n
= κ−((I − E2(∆))Πκ) + κ+(E2(∆)Πκ)− n,

and we obtain

κ+(E2(∆)Πκ)− κ+(E1(∆)Πκ)

≤ n+ κ−((I − E1(∆))Πκ)− κ−((I − E2(∆))Πκ)

= n+ (κ− κ−(E1(∆)Πκ))− (κ− κ−(E2(∆)Πκ))

= n+ κ−(E2(∆)Πκ)− κ−(E1(∆)Πκ).

This implies sig(A2,∆)− sig(A1,∆) ≤ n. The same reasoning with A1 and
A2 interchanged shows sig(A1,∆) − sig(A2,∆) ≤ n and hence (3.4) holds
for the case of bounded operators and ∆ ⊂ R \ σess(A1).

Step 2. Let us now reduce the general case to that considered in Step
1. Assume that A1 and A2 are selfadjoint relations in Πκ such that ρ(A1) ∩
ρ(A2) 6= ∅ and (3.3) holds. We note that the theorem is true if it holds for
bounded open intervals ∆ = (a, b) such that [a, b] ⊂ R \ σess(A1) (which is
equivalent to [a, b] ⊂ R \ σess(A2) by (3.3)), and hence we keep this assump-
tion. Then we can choose a point λ0 > b such that λ0 ∈ ρ(A1)∩ρ(A2), define
the bounded selfadjoint operators

B1 := (A1 − λ0)−1 and B2 := (A2 − λ0)−1,
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and put ∆′ := ((b − λ0)−1, (a − λ0)−1). From the identity (see, e.g., [29,
Section 2])

(Aj − η)−1 = − 1

η − λ0
− 1

(η − λ0)2

(
Bj −

1

η − λ0

)−1

, η 6= λ0,

we conclude {y, x} ∈ Aj − η if and only if{
−(η − λ0)2y − (η − λ0)x, x

}
∈ Bj −

1

η − λ0
.

For x = 0 this shows that y is an eigenvector corresponding to η ∈ σp(Aj) if
and only if y is an eigenvector corresponding to 1

η−λ0
∈ σp(Bj), and for x 6= 0

this shows how Jordan chains of Aj corresponding to η ∈ σp(Aj) translate
into Jordan chains corresponding to 1

η−λ0
∈ σp(Bj), and vice versa. These

observations imply L∆(Aj) = L∆′(Bj), j = 1, 2, and, in particular,

sig(A1,∆) = sig(B1,∆
′) and sig(A2,∆) = sig(B2,∆

′).

The functional calculus for selfadjoint relations from [29, Section 3] then
yields ∆′ ⊂ R \ σess(Bj), j = 1, 2, and hence the assertion follows from the
above considerations and Step 1.

(ii) From (3.1) and (3.2) we see

eig(Aj ,∆) = κ+(L∆(Aj)) + κ−(L∆(Aj)) = sig(Aj ,∆) + 2κ−(L∆(Aj))

for j = 1, 2. This and item (i) firstly imply that eig(A1,∆) is finite if and
only if eig(A2,∆) is finite and secondly that∣∣ eig(A1,∆)− eig(A2,∆)

∣∣
≤
∣∣ sig(A1,∆)− sig(A2,∆)

∣∣+ 2
∣∣κ−(L∆(A1))− κ−(L∆(A2))

∣∣
≤ n+ 2κ.

This consideration also shows that | eig(A1,∆) − eig(A2,∆)| = n + 2κ
if and only if | sig(A1,∆)− sig(A2,∆)| = n and either κ−(L∆(A1)) = κ and
κ−(L∆(A2)) = 0 or κ−(L∆(A1)) = 0 and κ−(L∆(A2)) = κ. The fact that
the estimates in (i) and (ii) are both sharp will be discussed independently
in the next section. �

4. Explicit operator models for a class of scalar rational
functions

The aim of this section is to provide an explicit and elementary operator
model for special scalar rational functions of the form

M(λ) =
Πm
i=1(λ− νi)

Πm
i=1(λ− µi)

, (4.1)

where it is assumed for simplicity that all zeros and poles are real, simple
and distinct, that is, νi 6= νj and µi 6= µj for i 6= j, and νi 6= µj for all
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1 ≤ i, j ≤ m. It is no restriction to assume that the poles µi are numbered
in such a way that

M(λ) =

κ∑
i=1

αi
λ− µi

+

m∑
i=κ+1

−αi
λ− µi

+ 1 (4.2)

holds with α1, . . . αm > 0 and 1 ≤ κ ≤ m. The model in Section 4.1 is
convenient to show that the estimates in the previous section are sharp (see
Section 4.2) and it has also been used in a similar context in [8] and [9];
we refer to [1, 2, 19, 24, 32, 33, 35, 38] for more general operator models
for scalar, matrix and operator-valued rational functions, generalized Nevan-
linna, definitizable and locally holomorphic functions.

4.1. The functions M and −M−1 as Weyl functions

We construct a model for M via boundary triplets for non-densely defined
symmetric operators in finite-dimensional Pontryagin spaces, and the key

feature is that a boundary triple {C, Γ̂0, Γ̂1} is provided such that

Â0 = ker Γ̂0 =


µ1 0 · · · 0
0 µ2 0
...

. . .
...

0 0 · · · µm

 (4.3)

is selfadjoint in the Pontryagin space Πκ = (Cm, [·, ·]), where

[x, y] = −
κ∑
i=1

xiȳi +

m∑
i=κ+1

xiȳi, (4.4)

with x = (x1, . . . , xm)>, y = (y1, . . . , ym)> ∈ Cm, and the corresponding
Weyl function isM in (4.1)-(4.2). Since {C,Γ1,−Γ0} is a boundary triple with
Weyl function −M−1 this also yields that the eigenvalues of the selfadjoint

matrix Â1 = ker Γ̂1 in Πκ are the zeros of M , that is, σ(Â1) = {ν1, . . . , νm},
and it turns out that Â1 is the m×m-matrix given by

Â1 =

(
Bκ,κ Bκ,m−κ

Bm−κ,κ Bm−κ,m−κ

)
(4.5)

where the κ× κ-matrix Bκ,κ is given by

Bκ,κ =


−α1 + µ1 −√α1α2 · · · −√α1ακ
−√α2α1 −α2 + µ2 −√α2ακ

...
. . .

...
−√ακα1 −√ακα2 · · · −ακ + µκ


and the (m− κ)× (m− κ)-matrix Bm−κ,m−κ is given by

Bm−κ,m−κ =


ακ+1 + µκ+1

√
ακ+1ακ+2 · · · √ακ+1αm√

ακ+2ακ+2 ακ+2 + µκ+2
√
ακ+2αm

...
. . .

...√
αmακ+1

√
ακακ+2 · · · αm + µm,
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and the κ× (m− κ)-matrix Bκ,m−κ and the (m− κ)× κ-matrix Bm−κ,κ are

Bκ,m−κ =


√
α1ακ+1 · · · √α1αm√
α2ακ+1 · · · √α2αm

...
...√

ακακ+1 · · · √ακαm


and

Bm−κ,κ =


−√ακ+1α1 · · · −√ακ+1ακ
−√ακ+2α1 · · · −√ακ+2ακ

...
...

−√αmα1 · · · −√αmακ,


respectively. The construction of the boundary triple {C, Γ̂0, Γ̂1} below is
based on the abstract coupling method in Proposition 6.2 and the following
two elementary examples.

Example 4.1. Let α > 0 and µ, γ ∈ R. Consider the trivial symmetric relation
S = {{0, 0}} in the Hilbert space H = C and its adjoint S∗ = H×H. Let

Γ0f̂ =
1√
α

(f ′ − µf) and Γ1f̂ = −
√
αf + γ

1√
α

(f ′ − µf),

f̂ = {f, f ′} ∈ S∗, and note that

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗. It is not difficult to check that the
mapping (Γ0,Γ1)> : S∗ → C2 is onto and hence {C,Γ0,Γ1} is a boundary
triple for S∗. It follows that the selfadjoint relation A0 = ker Γ0 is given by

A0 =
{
{f, µf} : f ∈ H

}
and hence A0 is the multiplication operator with the real constant µ in the

Hilbert space H = C. Note also that σ(A0) = {µ}. From N̂λ(S∗) = {{f, λf} :
f ∈ H} and the definition of the Weyl function corresponding to {C,Γ0,Γ1}
it follows that

M(λ) =
Γ1f̂λ

Γ0f̂λ
=
−
√
αf + γ 1√

α
(λf − µf)

1√
α

(λf − µf)
=
−α
λ− µ

+ γ, λ 6= µ.

Example 4.2. Let α > 0 and µ, γ ∈ R. Consider the trivial symmetric relation
S = {{0, 0}} in the Pontryagin space Π1 = (C, [·, ·]), where [x, y] := −xȳ,
x, y ∈ C, and its adjoint S+ = H×H. A similar computation as in the first
example shows that

Γ0f̂ =
1√
α

(f ′ − µf) and Γ1f̂ =
√
αf + γ

1√
α

(f ′ − µf),

f̂ = {f, f ′} ∈ S∗, is a boundary triple for S+ with A0 = ker Γ0 as above and
corresponding Weyl function

M(λ) =
α

λ− µ
+ γ, λ 6= µ.
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In the following we apply Proposition 6.2 to realize M in (4.2) as a
Weyl function. For this we make use of the symmetric relations and boundary
triples in Examples 4.1 and 4.2, and we assume κ < m. More precisely, for

1 ≤ i ≤ κ we consider the boundary triples {C,Γ(i)
0 ,Γ

(i)
1 }, where

Γ
(i)
0 f̂i =

1
√
αi

(f ′i − µifi) and Γ
(i)
1 f̂i =

√
αifi, f̂i = {fi, f ′i} ∈ C2,

and the relation Si = {{0, 0}} is viewed as a symmetric relation in the Pon-
tryagin space Π1 = (C, [·, ·]). For κ+ 1 ≤ i ≤ m− 1 we define the boundary

triples {C,Γ(i)
0 ,Γ

(i)
1 }, where

Γ
(i)
0 f̂i =

1
√
αi

(f ′i − µifi) and Γ
(i)
1 f̂i = −

√
αifi, f̂i = {fi, f ′i} ∈ C2,

and the relation Si = {{0, 0}} is viewed as a symmetric relation in the Hilbert

space H = (C, (·, ·)). For i = m we use the boundary triple {C,Γ(m)
0 ,Γ

(m)
1 },

where

Γ
(m)
0 f̂m =

1
√
αm

(f ′m − µmfm), f̂m = {fm, f ′m} ∈ C2,

and

Γ
(m)
1 f̂m = −

√
αmfm +

1
√
αm

(f ′m − µmfm), f̂m = {fm, f ′m} ∈ C2,

and Sm = {{0, 0}} is symmetric in the Hilbert space H = (C, (·, ·)). In the
case κ = m (which is not treated separately here) the minus sign in front

of the term
√
αmfm in the definition of the boundary map Γ

(m)
1 has to be

removed and the the relation Sm = {{0, 0}} should then be viewed as a
symmetric relation in Π1 = (C, [·, ·]).

In the present situation it is clear that the orthogonal sum A
(1)
0 ×. . . A

(m)
0

is given by the diagonal matrix Â0 in (4.3), and the Pontryagin space from
Proposition 6.2 is Πκ = (Cm, [·, ·]), where the indefinite inner product [·, ·] is
as in (4.4). The relation H in Proposition 6.2 is the restriction of the diagonal

matrix Â0 to the subspace

domH =

{
f = (f1, . . . , fm)> ∈ Cm :

κ∑
i=1

√
αifi −

m∑
i=κ+1

√
αifi = 0

}
and it follows from Proposition 6.2 that {C, Γ̂0, Γ̂1}, where

Γ̂0f̂ = Γ
(i)
0 f̂i =

1
√
αi

(f ′i − µifi), 1 ≤ i ≤ m,

and

Γ̂1f̂ =

m∑
i=1

Γ
(i)
1 f̂i

=

κ∑
i=1

√
αifi −

m∑
i=κ+1

√
αifi +

1
√
αm

(f ′m − µmfm)

(4.6)
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is a boundary triple for

H+ =

{{
ĥ1, . . . , ĥm

}
∈ C2 × · · · × C2 :

h′1 − µ1h1√
α1

= · · · = h′m − µmhm√
αm

}
such that the corresponding Weyl function is given by M in (4.2). It remains

to compute the explicit form of ker Γ̂1 and to show that it coincides with the

m×m-matrix in (4.5). Note first that by (4.6) we have for f̂ ∈ ker Γ̂1 that

1
√
αm

(f ′m − µmfm) = −
κ∑
i=1

√
αifi +

m∑
i=κ+1

√
αifi. (4.7)

Since
1
√
αj

(f ′j − µjfj) =
1
√
αm

(f ′m − µmfm), 1 ≤ j ≤ m,

we conclude together with (4.7) that

f ′j = µjfj −
κ∑
i=1

√
αjαifi +

m∑
i=κ+1

√
αjαifi, 1 ≤ j ≤ m,

and hence for 1 ≤ j ≤ κ

f ′j = (−αj + µj)fj −
κ∑

i=1,i6=j

√
αjαifi +

m∑
i=κ+1

√
αjαifi (4.8)

and for κ+ 1 ≤ j ≤ m

f ′j = (αj + µj)fj −
κ∑
i=1

√
αjαifi +

m∑
i=κ+1,i6=j

√
αjαifi. (4.9)

Now the first κ rows of the m ×m matrix ker Γ̂1 can be read off from (4.8)
and the the remaining last m−κ rows are obtained from (4.9). It follows that

Â1 in (4.5) coincides with ker Γ̂1.

Observe also that Â0 and Â1 are rank one perturbations of each other
since both are one dimensional extensions of the nondensely defined symmet-
ric matrix H and Krein’s formula yields

(Â1−λ)−1 = (Â0−λ)−1−γ(λ)M(λ)−1γ(λ̄)+, λ ∈ ρ(Â0)∩ρ(Â1). (4.10)

Since {C, Γ̂1,−Γ̂0} is a boundary triple for H+ with corresponding Weyl
function −M−1 and each pole of −M−1 is also a pole of the resolvent of

Â1 = ker Γ̂1 from (6.3) it follows that that the m distinct poles of −M−1,

and hence the m distinct zeros of M , coincide with the eigenvalues of Â1.
We also mention that the model constructed here satisfies the minimality
condition

Cm = span
{

ker(H+ − λ) : λ ∈ C \ R
}
,

which can be checked by a direct computation.
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4.2. Sharpness of the estimates in Theorem 3.1

The aim of this subsection is to show that both estimates in Theorem 3.1 are
sharp in the following sense: For any κ, n ∈ N and any open interval ∆ ⊂ R
there exist selfadjoint matrices A and B in a finite-dimensional Pontryagin
space Πκ such that

dim ran
(
(A− λ)−1 − (B − λ)−1

)
= n, λ ∈ C \ R;

and ∣∣ sig(A,∆)− sig(B,∆)
∣∣ = n

and ∣∣ eig(A,∆)− eig(B,∆)
∣∣ = n+ 2κ

hold. For this, fix κ ∈ N, n ∈ N, and a < b, set ∆ = (a, b), and choose real
numbers µ1, . . . , µ2κ+1 such that

a < µκ+1 < µ1 < µκ+2 < µ2 < · · · < µ2κ < µκ < µ2κ+1 < b

and real numbers ν1, . . . , ν2κ+1 such that

b < ν1 < · · · < ν2κ+1.

Next consider the function

M(λ) =
Πm
i=1(λ− νi)

Πm
i=1(λ− µi)

with m = 2κ+ 1 as in (4.1). Here it follows that

M(λ) =

κ∑
i=1

αi
λ− µi

+

2κ+1∑
i=κ+1

−αi
λ− µi

+ 1,

and by definition M has 2κ+ 1 poles µ1, . . . , µ2κ+1 in the interval ∆ and no

zeros in ∆. Hence the (2κ + 1) × (2κ + 1)-matrix Â0 in (4.3) is selfadjoint

in the Pontryagin space Πκ = (C2κ+1, [·, ·]) (see (4.4)) and Â0 has 2κ + 1
distinct eigenvalues µ1, . . . , µ2κ+1 in ∆; more precisely, here

eig(Â0,∆) = 2κ+ 1, κ+(L∆(Â0)) = κ+ 1, κ−(L∆(Â0)) = κ,

and hence

sig(Â0,∆) = κ+(L∆(Â0))− κ−(L∆(Â0)) = 1.

Since −M−1 has no poles in ∆, the selfadjoint (2κ+ 1)× (2κ+ 1)-matrix Â1

in (4.5) has no eigenvalues in ∆, so that,

eig(Â1,∆) = sig(Â1,∆) = κ+(L∆(Â1)) = κ−(L∆(Â1)) = 0.

Furthermore, by construction we have

dim ran
(
(Â0 − λ)−1 − (Â1 − λ)−1

)
= 1, λ ∈ C \ R;

cf. (4.10), and as ∣∣ sig(Â0,∆)− sig(Â1,∆)
∣∣ = 1

and ∣∣ eig(Â0,∆)− eig(Â1,∆)
∣∣ = 1 + 2κ,
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it follows that the estimates in Theorem 3.1 (i) and (ii) are both sharp in
the case n = 1. If n > 1 fix some points η ∈ ∆, ζ ∈ R \∆, and consider the
matrices

B̂0 =

(
Â0 0
0 ηIn−1,n−1

)
and B̂1 =

(
Â1 0
0 ζIn−1,n−1

)
,

where In−1,n−1 is the (n− 1)× (n− 1)-identity matrix in the Hilbert space

(Cn−1, (·, ·)) and the (2κ + n) × (2κ + n)-matrices B̂0 and B̂1 are viewed
as selfadjoint matrices in the Pontryagin space Πκ = (C2κ+n, [·, ·]) with [·, ·]
given by

[x, y] = −
κ∑
i=1

xiȳi +

2κ+n∑
i=κ+1

xiȳi, x, y ∈ C2κ+n.

Here we have

eig(B̂0,∆) = 2κ+ n, κ+(L∆(B̂0)) = κ+ n, κ−(L∆(B̂0)) = κ,

and sig(B̂0,∆) = κ+(L∆(B̂0))− κ−(L∆(B̂0)) = n, and

eig(B̂1,∆) = sig(B̂1,∆) = κ+(L∆(B̂1)) = κ−(L∆(B̂1)) = 0,

and by construction

dim ran
(
(B̂0 − λ)−1 − (B̂1 − λ)−1

)
= n, λ ∈ C \ R.

Therefore

| sig(B̂0,∆)− sig(B̂1,∆)
∣∣ = n

and ∣∣ eig(B̂0,∆)− eig(B̂1,∆)
∣∣ = n+ 2κ,

and hence we have shown that the estimates in Theorem 3.1 (i) and (ii) are
both sharp for any κ ∈ N, n ∈ N, and any open interval ∆ = (a, b).

5. Sturm-Liouville problems with boundary condition
depending rationally on the spectral parameter

In this section we illustrate the estimates in Section 3 and the operator model
in Section 4 in the context of a singular Sturm-Liouville type spectral problem
with λ-rational boundary conditions. Similar spectral problems were consid-
ered in various publications, see, e.g. [10, 11, 12, 13, 23, 25, 42, 43, 44] for a
small selection and also [3, 17, 26, 27, 30, 41] for more abstract treatments
of λ-dependent boundary value problems. The present construction is based
on the coupling technique from [20], see also [5, 7].

Let q ∈ L1
loc((0,∞)) be a real valued function such that the differential

expression − d2

dx2 + q is regular at zero and in the limit point case at ∞. We
consider the λ-dependent boundary value problem

−f ′′ + qf = λf, s(λ)f(0) + t(λ)f ′(0) = 0, λ ∈ C, (5.1)
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in L2((0,∞)), where it is assumed that s and t are rational functions such
that

r(λ) =
s(λ)

t(λ)
=

Πm
i=1(λ− νi)

Πm
i=1(λ− µi)

(5.2)

is of the form as in (4.1)-(4.2). In particular, it is assumed that s and t are
such that the zeros and poles of r are real, simple and distinct. Then there
exist 1 ≤ κ ≤ m and α1, . . . , αm > 0 such that

r(λ) =

κ∑
i=1

αi
λ− µi

+

m∑
i=κ+1

−αi
λ− µi

+ 1. (5.3)

If λ is a pole of s (of t) the boundary condition in (5.1) is understood as
f(0) = 0 (f ′(0) = 0, respectively). We shall say that λ ∈ C is an eigenvalue of
(5.1) and f is a corresponding eigenfunction if f 6= 0 belongs to the maximal
domain

Dmax =
{
f ∈ L2((0,∞)) : f, f ′ ∈ ACloc((0,∞)), −f ′′ + qf ∈ L2((0,∞))

}
and (5.1) is satisfied; here ACloc((0,∞)) denotes the space of all locally ab-
solutely continuous functions on (0,∞).

Let S be the minimal operator associated with − d2

dx2 + q in L2((0,∞)),
that is,

Sf = −f ′′ + qf, domS =
{
f ∈ Dmax : f(0) = f ′(0) = 0

}
,

and recall that the adjoint of S is the maximal operator

S∗f = −f ′′ + qf, domS∗ = Dmax.

It is not difficult to check that {C,Γ0,Γ1} with Γ0f = f(0) and Γ1f = f ′(0)
is a boundary triple for S∗ and A0 = S∗ � ker Γ0 corresponds to the Dirichlet
boundary condition at the left endpoint 0. The Weyl function corresponding
to {C,Γ0,Γ1} is given by

m(λ) =
f ′(0)

f(0)
, f ∈ ker(S∗ − λ), λ ∈ ρ(A0).

We recall that, since the symmetric operator S is simple, the function m
cannot be analytically extended to a larger set than ρ(A0). In particular, if λ
is an isolated eigenvalue of A0 it is a pole of the resolvent of A0 and therefore
a pole of m. Conversely, if λ is a pole of m then it is an eigenvalue of A0 (cf.
(6.3)).

The next auxiliary lemma shows that the eigenvalues of the problem
(5.1) in C \ σess(A0) coincide with the zeros of the function m+ r.

Lemma 5.1. For λ ∈ C \ σess(A0) the following are equivalent:

(i) λ is an eigenvalue of (5.1);
(ii) m(λ) = −r(λ) (or λ is a pole of both m and r).

In particular, the eigenvalues of (5.1) are discrete in C \ σess(A0).
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Proof. (i)⇒(ii) Let λ be an eigenvalue of (5.1) with corresponding eigenfunc-
tion f 6= 0 and assume first that λ ∈ ρ(A0). Then we have f(0) 6= 0 for
f ∈ ker(S∗ − λ), f 6= 0, and hence r has no pole at λ. Therefore,

m(λ)f(0) = f ′(0) = −r(λ)f(0)

and thus m(λ)+r(λ) = 0. If λ ∈ σ(A0) then λ is an isolated eigenvalue of A0.
Thus f(0) = 0, f ′(0) 6= 0, and λ is a pole of m. From r(λ)f(0) + f ′(0) = 0 it
follows that λ is also a pole of r. This yields (ii).

(ii)⇒(i) Assume that m(λ) = −r(λ). If λ ∈ ρ(A0) then λ is neither a
pole of m nor of r, and for f ∈ ker(S∗ − λ) we have

r(λ)f(0) + f ′(0) = −m(λ)f(0) + f ′(0) = 0.

If λ is an isolated eigenvalue of A0 then λ is a pole of m and hence of r which
implies that f ∈ ker(S∗ − λ) satisfies the boundary condition in (5.1).

Suppose that λ0 ∈ C \ σess(A0) is an accumulation point of eigenvalues
λn, n ∈ N, of (5.1). Then (m+ r)(λn) = 0 for all n ∈ N so that λ0 cannot be
a pole of m + r. Hence, either λ0 ∈ ρ(A0) or it is a removable singularity of
m+ r. In both cases it follows that m = −r. Hence, the domain of definition
of r coincides with ρ(A0) which implies that the spectrum of A0 consists of
a finite number of eigenvalues; a contradiction. �

The aim is now to construct a linearization Ã for the λ-dependent
boundary value problem (5.1) with the help of the model discussed in Sec-
tion 4. Let µ1, . . . µm be the poles of the rational function r in (5.2)-(5.3) and
consider the selfadjoint diagonal matrix

H0 =


µ1 0 · · · 0
0 µ2 0
...

. . .
...

0 0 · · · µm

 (5.4)

in the Pontryagin space Πκ = (Cm, [·, ·]), where [·, ·] is defined as in (4.4).
Denote by H the restriction of H0 to the subspace

domH =

{
h = (h1, . . . , hm)> ∈ Cm :

κ∑
i=1

√
αihi −

m∑
i=κ+1

√
αihi = 0

}
(5.5)

and recall from Section 4.1 that {C, Γ̂0, Γ̂1} is a boundary triple for

H+ =

{{
ĥ1, . . . , ĥm

}
∈ (C2)m :

h′1 − µ1h1√
α1

= · · · = h′m − µmhm√
αm

}
,

where

Γ̂0ĥ =
1
√
αi

(h′i − µihi), 1 ≤ i ≤ m,

and

Γ̂1ĥ =

κ∑
i=1

√
αihi −

m∑
i=κ+1

√
αihi +

1
√
αm

(h′m − µmhm), (5.6)
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such that the corresponding Weyl function is given by r in (5.2)-(5.3). There-

fore, if λ ∈ C is not a pole of r and ĥ = {h, λh} ∈ H+, then

Γ̂1ĥ = r(λ)Γ̂0ĥ.

We equip Π̃κ = L2((0,∞))×Πκ with the indefinite inner product[(
f
h

)
,

(
g
h′

)]
:= (f, g) + [h, h′], f, g ∈ L2((0,∞)), h, h′ ∈ Πκ,

so that Π̃κ is a Pontryagin space with κ negative squares.

The next theorem provides a selfadjoint operator Ã in Π̃κ which can be
viewed as a linearization or solution operator for the boundary value problem

(5.1) in the sense that the eigenvalues of Ã coincide with the eigenvalues of the

problem (5.1). The construction of Ã is based on the coupling method in [20]

and was also used in [5, 7]. The new feature here is that Ã can be determined
explicitely with the help of the model in Section 4 and that Theorem 3.1
yields information on the signature of the root subspaces corresponding to
isolated eigenvalues.

Theorem 5.2. Let {C,Γ0,Γ1} and {C, Γ̂0, Γ̂1} be the boundary triples for S∗

and H+ from above. Then

Ã :=

{{(
f
h

)
,

(
S∗f
h′

)}
∈ S∗ ×H+ :

Γ0f + Γ̂0{h, h′} = 0

Γ1f − Γ̂1{h, h′} = 0

}
is a selfadjoint operator in Π̃κ. The eigenvalues of Ã coincide with the eigen-
values of the λ-rational boundary value problem (5.1), and for each eigenvalue

λ of Ã one has

dim ker(Ã− λ) = 1. (5.7)

If λ ∈ R is an isolated eigenvalue of Ã then there exists an open interval

∆ ⊂ R such that ∆ ∩ σ(Ã) = {λ} and sig(Ã,∆) ∈ {−1, 0, 1}.

Proof. It follows in the same way as in [7, Proof of Theorem 4.1] that Ã is

selfadjoint in Π̃κ and it is straightforward to check that Ã is an operator. As

Ã ∩ (A0 ×H0) is a symmetric operator with defect one we have

dim ran
(
(Ã− λ0)−1 −

(
(A0 ×H0)− λ0

)−1)
= 1 (5.8)

for all λ0 ∈ ρ(Ã) ∩ ρ(A0 × H0). Furthermore, [5, Theorem 4.5 (iii)] implies

that the geometric multiplicity of the eigenvalues of Ã is one and hence (5.7)
is true.

In order to see that the eigenvalues of Ã coincide with the eigenvalues
of the boundary value problem (5.1) assume first that λ is an eigenvalue of

Ã. Then{(
f
h

)
,

(
λf
λh

)}
∈ Ã, {f, λf} ∈ S∗, ĥ = {h, λh} ∈ H+,
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and f 6= 0 as otherwise Γ̂0ĥ = −Γ0f = 0 and Γ̂1ĥ = Γ1f = 0 imply ĥ =
{h, λh} ∈ H and H has no eigenvalues; cf. (5.4)-(5.5). Since {f, λf} ∈ S∗,
the differential equation

−f ′′ + qf = λf

in (5.1) is satisfied. Moreover, if λ is not a pole of r then

r(λ)f(0) = r(λ)Γ0f = −r(λ)Γ̂0ĥ = −Γ̂1ĥ = −Γ1f = −f ′(0),

and if λ is a pole of r then λ ∈ σp(H0) and hence

f(0) = Γ0f = −Γ̂0{h, λh} = 0.

Thus λ is an eigenvalue of (5.1) with corresponding eigenvector f .
Conversely, if λ is an eigenvalue of (5.1) with corresponding eigenvector

f and λ is not a pole of r then λ 6∈ σ(H0) and hence there exists ĥ = {h, λh} ∈
H+ such that Γ̂0ĥ = −Γ0f . From

Γ̂1ĥ = r(λ)Γ̂0ĥ = −r(λ)Γ0f = −r(λ)f(0) = f ′(0) = Γ1f

it follows that {(
f
h

)
,

(
λf
λh

)}
∈ Ã. (5.9)

In the case that λ is a pole of r the eigenvector f satisfies the boundary
condition f(0) = 0 and hence {f, λf} ∈ A0. Note also that Γ1f = f ′(0) 6= 0.

Furthermore, λ is an eigenvalue of H0 and hence ĥ = {h, λh} ∈ H0 for some

h 6= 0. Then Γ0f = 0 = Γ̂0ĥ and as Γ1ĥ 6= 0 it is clear that h can be

chosen such that Γ̂1ĥ = Γ1f . It follows that (5.9) holds and therefore λ is an

eigenvalue of Ã.

In order to show that real isolated eigenvalues of Ã satisfy sig(Ã,∆) ∈
{−1, 0, 1} we first note that (5.8) and σess(H0) = ∅ yield

σess(Ã) = σess(A0 ×H0) = σess(A0).

This implies, in particular, that there exists an open interval ∆ ⊂ R such that

∆∩σ(Ã) = {λ} and ∆\{λ} ⊂ ρ(A0×H0). In the case that there is no Jordan

chain of length > 1 of Ã at λ it follows from (5.7) that sig(Ã,∆) ∈ {−1, 0, 1}.
In the following assume that there is a Jordan chain of length > 1 of Ã at λ

and let (f, h)> and (g, k)> ∈ dom Ã such that

(Ã− λ)

(
f
h

)
= 0 and (Ã− λ)

(
g
k

)
=

(
f
h

)
.

Then f 6= 0 and h 6= 0, which is a consequence of the definition of Ã and the
fact that S and H do not possess eigenvalues. It also follows that

‖f‖2 + [h, h] =

[(
f
h

)
,

(
f
h

)]
=

[
(Ã− λ)

(
g
k

)
,

(
f
h

)]
=

[(
g
k

)
, (Ã− λ)

(
f
h

)]
= 0

and this implies [h, h] < 0.
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We claim that in the case λ ∈ σp(A0×H0) we have λ ∈ σp(A0)∩σp(H0)
and f ∈ ker(A0 − λ) and h ∈ ker(H0 − λ). In fact, if λ ∈ σp(A0 ×H0) then
it is clear that λ ∈ σp(A0) ∪ σp(H0) and hence λ ∈ σp(A0) or λ ∈ σp(H0).
If λ ∈ σp(A0) it follows from dim ker(A0 − λ) = 1 and f ∈ ker(S∗ − λ) that

f ∈ ker(A0 − λ) and this implies 0 = Γ0f = −Γ̂0{h, λh}. Thus {h, λh} ∈ H0

and hence h ∈ ker(H0 − λ) and λ ∈ σp(H0). The same argument shows that
λ ∈ σp(H0) implies h ∈ ker(H0−λ) and f ∈ ker(A0−λ), so that λ ∈ σp(A0).
Therefore,

L∆(A0 ×H0) = span

{(
f
0

)
,

(
0
h

)}
and as [h, h] < 0 it follows that sig(A0 ×H0,∆) = 0. Hence (5.8) and Theo-

rem 3.1 (i) yield sig(Ã,∆) ∈ {−1, 0, 1}. In the case λ 6∈ σp(A0×H0) we also

have sig(A0×H0,∆) = 0 and sig(Ã,∆) ∈ {−1, 0, 1} follows again from (5.8)
and Theorem 3.1 (i). �

Making use of the explicit form of H+ and the boundary mappings Γ̂0

and Γ̂1 the linearization Ã in the previous theorem can be determined more
explicitely. This is done in a similar way as in the end of Section 4.1. In fact,
suppose that {(

f
h

)
,

(
S∗f
h′

)}
∈ Ã

for some f ∈ domS∗ and {h, h′} ∈ H+. The boundary condition Γ1f −
Γ̂1{h, h′} = 0 together with (5.6) yields

1
√
αm

(h′m − µmhm) = Γ1f −
κ∑
i=1

√
αihi +

m∑
i=κ+1

√
αihi

and as

1
√
α1

(h′1 − µ1h1) = · · · = 1
√
αm

(h′m − µmhm)

it follows for 1 ≤ j ≤ κ that

h′j =
√
αjf

′(0) + (µj − αj)hj −
κ∑

i=1,i6=j

√
αjαihi +

m∑
i=κ+1

√
αjαihi (5.10)

and for κ+ 1 ≤ j ≤ m that

h′j =
√
αjf

′(0) + (µj + αj)hj −
κ∑
i=1

√
αjαihi +

m∑
i=κ+1,i6=j

√
αjαihi. (5.11)

With the help of (5.10) and (5.11) the linearization Ã in Theorem 5.2 can be
explicitely computed. This yields a form similar to (4.5).
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6. Appendix

In this appendix we briefly review the notion of boundary triples and their
Weyl functions for symmetric operators and relations in Pontryagin spaces;
cf. [18, 21, 22, 31] for more details. In addition, we provide a construction
of a boundary triple for a certain intermediate extension of a direct sum of
symmetric relations such that the associated Weyl function is the sum of the
Weyl functions associated to the symmetric relations; this result is used in
Section 4.

Definition 6.1. Let S be a closed symmetric relation in a Pontryagin space
Πκ. A boundary triple for S+ is a triple {G,Γ0,Γ1} consisting of a Hilbert
space (G, (·, ·)) and linear mappings Γ0,Γ1 : S+ → G such that the abstract
Green’s identity

[f ′, g]− [f, g′] = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ S+ and Γ = (Γ0,Γ1)> : S+ → G2 is
surjective.

In the case that S is a densely defined symmetric operator the adjoint
S+ is also an operator and instead of boundary mappings defined on the
graph S+ we shall use boundary mappings defined on domS+, that is, we
require Γ0,Γ1 : domS+ → G such that

[S+f, g]− [f, S+g] = (Γ1f,Γ0g)− (Γ0f,Γ1g)

holds for all f, g ∈ domS+ and Γ = (Γ0,Γ1)> : domS+ → G2 is surjective.
From the context it will always be clear if the boundary mappings are defined
on the adjoint relation or on the domain of the adjoint operator.

Assume that {G,Γ0,Γ1} is a boundary triple for S+. Then the mapping

Θ 7→ AΘ =
{
f̂ ∈ S+ : Γf̂ = {Γ0f̂ ,Γ1f̂} ∈ Θ

}
(6.1)

is a bijection between the space of closed linear relations in G × G and the
set of closed extension AΘ ⊂ S+ of S, and

(AΘ)+ = AΘ∗ (6.2)

holds. In particular, AΘ is a selfadjoint extension of S in the Pontryagin
space Πκ if and only if Θ is a selfadjoint relation in the Hilbert space G. The
selfadjoint extensions corresponding to the kernels of the boundary mappings
Γ0 and Γ1 are denoted by

A0 = ker Γ0 and A1 = ker Γ1,

and we remark that the extension A0 corresponds to the selfadjoint relation
Θ0 = {{0, g′} : g′ ∈ G} and A1 corresponds to the zero operator Θ1 = 0 in G.
The extension A0 will often play the role of a fixed selfadjoint extension, and
it will usually be assumed that ρ(A0) 6= ∅. This condition is automatically
satisfied when A0 is an operator.

In the following we use the notation

Nλ(S+) = ker(S+ − λ) and N̂λ(S+) =
{
{f, λf} : f ∈ Nλ(S+)

}
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for λ ∈ C. Suppose that ρ(A0) 6= ∅. Then we have the direct sum decompo-
sition

S+ = A0 +̇ N̂λ(S+) = ker Γ0 +̇ N̂λ(S+), λ ∈ ρ(A0),

and hence it follows that the boundary mapping Γ0 restricted to N̂λ(S+) is
bijective. The γ-field and Weyl function corresponding to the boundary triple
{G,Γ0,Γ1} are defined for λ ∈ ρ(A0) by

γ(λ) : G → Πκ, ϕ 7→ γ(λ)ϕ = π1

(
Γ0 � N̂λ(S+)

)−1
ϕ

and
M(λ) : G → G, ϕ 7→M(λ)ϕ = Γ1

(
Γ0 � N̂λ(S+)

)−1
ϕ,

respectively; here π1 : Πκ × Πκ → Πκ is the projection onto the first com-
ponent. It can be shown that γ(λ) ∈ B(G,Πκ) and M(λ) ∈ B(G) for all
λ ∈ ρ(A0) and both functions λ 7→ γ(λ) and λ 7→ M(λ) are analytic on
ρ(A0). The γ-field and Weyl function satisfy the identities

γ(λ) =
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ)

and
M(λ)−M(µ)∗ = (λ− µ)γ(µ)+γ(λ)

for all λ, µ ∈ ρ(A0), and these identities also yield

M(λ) = M(µ)∗ + (λ− µ)γ(µ)+
(
I + (λ− µ)(A0 − λ)−1

)
γ(µ). (6.3)

Assume now that Θ is a closed relation in G and consider the corre-
sponding closed extension AΘ ⊂ S+ of S in (6.1). Then for all λ ∈ ρ(A0) one
has

λ ∈ ρ(AΘ) if and only if 0 ∈ ρ(Θ−M(λ))

and
λ ∈ σi(AΘ) if and only if 0 ∈ σi(Θ−M(λ)), i = p, c, r.

Furthermore, for all λ ∈ ρ(A0)∩ρ(AΘ) one has the following variant of Krein’s
resolvent formula for canonical extensions:

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)(Θ−M(λ))−1γ(λ)+.

In the next proposition it shown how the sum of given Weyl functions
can be realized as a Weyl function of a certain intermediate extension; cf.
[20, Proposition 4.3]. Here it is assumed for convenience that the defect of
the underlying symmetric relations is the same.

Proposition 6.2. Let Si, i = 1, . . . ,m, be closed symmetric relations in the

Pontryagin spaces Hi and let {G,Γ(i)
0 ,Γ

(i)
1 } be boundary triples for S+

i with

A
(i)
0 = ker Γ

(i)
0 and corresponding Weyl functions Mi. Then

H =

{{
f̂1, . . . , f̂m

}
∈ S+

1 × · · · × S+
m :

Γ
(1)
0 f̂1 = · · · = Γ

(m)
0 f̂m = 0

Γ
(1)
1 f̂1 + · · ·+ Γ

(m)
1 f̂m = 0

}
is a closed symmetric relation in the Pontryagin space H1[+̇] . . . [+̇]Hm and
the adjoint relation H+ is given by

H+ =
{{
f̂1, . . . , f̂m

}
∈ S+

1 × · · · × S+
m : Γ

(1)
0 f̂1 = · · · = Γ

(m)
0 f̂m

}
. (6.4)
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Then {G, Γ̂0, Γ̂1}, where

Γ̂0f̂ := Γ
(i)
0 f̂i, 1 ≤ i ≤ m, f̂ =

{
f̂1, . . . , f̂m

}
∈ H+, (6.5)

and

Γ̂1f̂ :=

m∑
i=1

Γ
(i)
1 f̂i, f̂ =

{
f̂1, . . . , f̂m

}
∈ H+, (6.6)

is a boundary triple for H+ with Â0 = ker Γ̂0 = A
(1)
0 × · · · × A

(m)
0 and

corresponding Weyl function

λ 7→
m∑
i=1

Mi(λ), λ ∈ ρ(Â0) =

m⋂
i=1

ρ(A
(i)
0 ). (6.7)

Proof. It can be easily verified that {Gm, Γ̃0, Γ̃1}, where

Γ̃j
{
f̂1, . . . , f̂m

}
=
{

Γ
(1)
j f̂1, . . . ,Γ

(m)
j f̂m

}
, j = 0, 1, f̂i ∈ S+

i , i = 1, . . . ,m,

is a boundary triple for S+
1 × · · · × S+

m with Ã0 = ker Γ̃0 = A
(1)
0 × · · · ×A

(m)
0

and corresponding Weyl function

λ 7→

M1(λ) 0
. . .

0 Mm(λ)

 , λ ∈ ρ(Ã0) =

m⋂
i=1

ρ(A
(i)
0 ).

Now consider the relation H above and note that

Θ̃H : = Γ̃H =

{{(
Γ

(1)
0 f̂1

Γ
(1)
1 f̂1

)
, . . . ,

(
Γ

(m)
0 f̂m

Γ
(m)
1 f̂m

)}
:
{
f̂1, . . . , f̂m

}
∈ H

}

=

{{(
0
x1

)
, . . . ,

(
0

xm−1

)
,

(
0

−
∑m−1
i=1 xi

)}
: x1, . . . , xm−1 ∈ G

}
is a closed symmetric relation in Gm. The adjoint of Θ̃H in Gm is given by

Θ̃∗H =

{{(
y
x1

)
, . . .

(
y
xm

)}
: y, x1, . . . , xm ∈ G

}
and by (6.1)-(6.2) the preimage of Θ̃∗H under Γ̃ is the adjoint of H. It is easy
to see that this is the relation H+ in (6.4).

Let now f̂ = {f, f ′} = {f̂1, . . . , f̂m}, ĝ = {g, g′} = {ĝ1, . . . , ĝm} ∈ H+.
Then we have

[f ′, g]− [f, g′] =
(
Γ̃1f̂ , Γ̃0ĝ

)
−
(
Γ̃0f̂ , Γ̃1ĝ

)
=

m∑
l=1

(
Γ

(l)
1 f̂l,Γ

(l)
0 ĝl

)
−

m∑
l=1

(
Γ

(l)
0 f̂l,Γ

(l)
1 ĝl

)
=

(
m∑
l=1

Γ
(l)
1 f̂l,Γ

(1)
0 ĝ1

)
−

(
Γ

(1)
0 f̂1,

m∑
l=1

Γ
(l)
1 ĝ

)
=
(
Γ̂1f̂ , Γ̂0ĝ

)
−
(
Γ̂0f̂ , Γ̂1ĝ

)
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and the surjectivity of (Γ̂0, Γ̂1)> : H+ → G × G is obvious, hence (6.5)-(6.6)
is a boundary triple for H+ with

Â0 = ker Γ̂0 = A
(1)
0 × · · · ×A

(m)
0 .

Let now λ ∈ ρ(Â0) =
⋂m
i=1 ρ(A

(i)
0 ) and consider

f̂λ =
{
f̂λ,1, . . . , f̂λ,m

}
∈ N̂λ(H+).

Then f̂λ,i ∈ N̂λ(S+
i ) and hence Mi(λ)Γ

(i)
0 f̂λ,i = Γ

(i)
1 f̂λ,i for i = 1, . . . ,m.

Therefore,
m∑
i=1

Mi(λ)Γ̂0f̂λ =

m∑
i=1

Mi(λ)Γ
(i)
0 f̂λ,i =

m∑
i=1

Γ
(i)
1 f̂λ,i = Γ̂1f̂λ, λ ∈ ρ(Â0),

shows that the Weyl function corresponding to the boundary triple (6.5) is
given by (6.7). �
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