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Let A and B be selfadjoint operators in a Krein space and assume that the resolvent 
difference of A and B is of rank one. In the case that A is nonnegative and I is 
an open interval such that σ(A) ∩ I consists of isolated eigenvalues we prove sharp 
estimates on the number and multiplicities of eigenvalues of B in I. The general 
result is illustrated with eigenvalue estimates for singular indefinite Sturm–Liouville 
problems.
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1. Introduction

Rank one and finite rank perturbations of selfadjoint operators in Hilbert spaces have been considered 
in various papers and in many applications in theoretical physics, e.g. in the investigation of singular per-
turbations in quantum mechanics, see [1–3,11,23,24,28,31,32,45,55]. It is well known that an n-dimensional 
selfadjoint perturbation of a selfadjoint operator in a Hilbert space preserves the essential spectrum and 
changes the spectral multiplicity by at most n, that is, for a bounded interval I ⊂ R and (in general 
unbounded) selfadjoint operators A, B in a Hilbert space H such that

(A− λ0)−1 − (B − λ0)−1 (1.1)
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is of rank n for some λ0 ∈ ρ(A) ∩ ρ(B), the dimensions of the spectral subspaces of A and B corresponding 
to the interval I differ at most by n, and this estimate is sharp. In particular, if I ⊂ ρ(A) then I contains 
at most n eigenvalues of B counted with multiplicities.

In the general non-selfadjoint case rank one and finite rank perturbations preserve the essential spectrum 
but precise results on the number and multiplicity of the discrete spectrum do not exist. Without further 
assumptions on the structure of the operators or the rank one perturbation the number of eigenvalues in a 
given interval can change arbitrarily, see [44, Theorem 1]. If the operators A and B under consideration are 
not selfadjoint in a Hilbert space but still selfadjoint in a Krein space, then several results on finite rank 
perturbations of different classes of operators exist; cf. [4,5,7,8,13,22,26,34–37]. However, these perturbation 
results are typically of qualitative nature and do not contain explicit bounds or estimates on the number and 
multiplicities of eigenvalues after the perturbation. In the matrix case we refer to [51–53], where so-called 
generic perturbations were investigated, and in [54] some estimates and bounds in the case of a Pontryagin 
space are given.

Our main objective in this paper is to obtain sharp bounds for the number and multiplicities of eigenvalues 
in the following Krein space perturbation problem: We assume that A and B are selfadjoint with respect 
to some indefinite inner product [·, ·], that A is nonnegative with respect to [·, ·], and that the perturbation 
(1.1) is of rank one. In that case B is either nonnegative (and we write κB = 0) or the form [B·, ·] has 
one negative square (and we write κB = 1). Let I be an open interval such that all spectral points of A in 
I are isolated eigenvalues and poles of the resolvent of A; here also eigenvalues of infinite multiplicity are 
allowed. In this setting our first main result (Theorem 3.5 below) states: The difference of the number nA(I)
of distinct eigenvalues of A in I and the number nB(I) of distinct eigenvalues of B in I can be estimated by 
the number nA,B(I) of common eigenvalues of A and B in I, and a correction term which is at most 3. The 
correction term depends on the fact whether 0 is in the interval I and whether the operator B is nonnegative 
(κB = 0) or has one negative square (κB = 1):

(i) If 0 /∈ I then

nA(I) − nA,B(I) − 1 ≤ nB(I) ≤ nA(I) + nA,B(I) +
{

1 if κB = 0,
3 if κB = 1.

(ii) If 0 ∈ I then

nA(I) − nA,B(I) − 2 ≤ nB(I) ≤ nA(I) + nA,B(I) +
{

2 if κB = 0,
3 if κB = 1.

It is remarkable that all the above estimates turn out to be sharp: There exist operators A and B (which are 
in fact matrices) such that the inequalities in (i) and (ii) become equalities. Moreover, we mention that the 
above estimates imply that the finiteness of the number of distinct eigenvalues of A in a gap of the essential 
spectrum is preserved under a one dimensional perturbation. This is a special case of a more general result 
from [13].

Our second main result are estimates of the total algebraic multiplicities mA(I) and mB(I) of the eigen-
values of A and B in I. This leads to the following estimates in Theorem 3.9 on the multiplicities of the 
eigenvalues which complement the results in Theorem 3.5 on the number of distinct eigenvalues:

(i) If 0 /∈ I then

mA(I) − 1 ≤ mB(I) ≤ mA(I) +
{

1 if κB = 0,
3 if κ = 1.
B
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(ii) If 0 ∈ I and 0 /∈ σp(A) then

mA(I) − 2 ≤ mB(I) ≤ mA(I) +
{

2 if κB = 0,
3 if κB = 1.

(iii) If 0 ∈ I and 0 ∈ σp(A) then

mA(I) − 4 ≤ mB(I) ≤ mA(I) +
{

4 if κB = 0,
6 if κB = 1.

Here, at the possible eigenvalue 0, Jordan chains of A and B may occur which makes the analysis more 
involved. In Theorem 3.8 we show that the dimension of the root subspaces of A and B at 0 differ at most 
by two, that is,

∣∣mA({0}) −mB({0})
∣∣ ≤ 2,

and that this estimate is sharp. We emphasize that the sharp estimates in Theorems 3.5, 3.8, and 3.9 are 
also new for the case of matrices.

The paper is organized as follows. After the introduction, in Section 2 we provide a useful Krein type 
formula for the resolvent difference of two selfadjoint operators A and B in a Krein space which differ by a 
rank one operator. Here the resolvent difference is expressed in a rank one perturbation term with a scalar 
Weyl or Q-function MA. Roughly speaking the poles (zeros) of MA coincide with the isolated eigenvalues 
of A (B, respectively). In the rest of Section 2 we explore the connections between the sign types of the 
isolated spectral points of A and B, and the behaviour of the function MA at its poles and zeros. In Section 3
the special case of a nonnegative operator A is investigated. This naturally leads to the function classes 
in Definition 3.2 studied by two of the authors in [14] and [15]. After some preparations in Section 3.1, 
we state and prove the main results Theorems 3.5 and 3.9 and some special cases in Sections 3.2–3.4. The 
proof of Theorem 3.8 on the multiplicity of the eigenvalue 0 requires different techniques and is given in 
Section 3.5. Section 3.6 contains some simple matrix examples which illustrate the sharpness of the estimates 
in Theorem 3.5 and Theorem 3.9. In Section 4 we show how our general eigenvalue estimates can be applied 
to indefinite singular Sturm–Liouville problems. We consider the situation where the associated operator is 
nonnegative in an L2-Krein space and, in this specific situation, the estimates from Section 3 can be slightly 
improved and lead to a generalization of [12, Theorem 4.1]. In particular, this also includes the so-called 
left definite Sturm–Liouville problems where the associated operator is uniformly positive in an L2-Krein 
space; cf. [12,16–18,20,38,40,41,56] for related work on left definite problems.

2. Rank one perturbations and sign types of isolated eigenvalues

A complex linear space K with a nondegenerate hermitian sesquilinear form [·, ·] is called a Krein space
if there exists a decomposition

K = K++̇ K−

such that the subspaces (K±, ±[·, ·]) are Hilbert spaces and orthogonal to each other with respect to [·, ·]. 
If K− is finite dimensional then (K , [·, ·]) is called a Pontryagin space. An element x in the Krein space 
(K , [·, ·]) is positive (negative, neutral) if [x, x] > 0 ([x, x] < 0, [x, x] = 0, respectively). For the general 
theory of Krein spaces we refer the reader to the monographs [6] and [19].
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For a densely defined linear operator A in the Krein space (K , [·, ·]) the adjoint with respect to the 
indefinite inner product [·, ·] is denoted by A+. The operator A is called selfadjoint if A = A+ and symmetric
if A ⊂ A+. We denote the point spectrum by σp(A), the spectrum by σ(A) and the resolvent set by ρ(A).

In the following let A and B be selfadjoint operators in the Krein space (K , [·, ·]) such that ρ(A) ∩ρ(B) �= ∅
and

dim ran
(
(A− λ0)−1 − (B − λ0)−1) = 1 (2.1)

holds for some (and hence for all) λ0 ∈ ρ(A) ∩ρ(B). In the next proposition we express the difference of the 
resolvents of A and B with two scalar functions which contain information about the spectra of A and B. 
These functions can be interpreted as Weyl functions or Q-functions, see e.g. [48]. Proposition 2.1 can be 
deduced from similar considerations as in [8,49].

Proposition 2.1. Let A and B be selfadjoint operators in the Krein space (K , [·, ·]) which satisfy (2.1). Then 
there exist holomorphic functions MA : ρ(A) → C, MB : ρ(B) → C symmetric with respect to the real line 
and vectors ϕA, ϕB in K such that the following hold.

(i) For γA(λ) := (1 + (λ − λ0)(A − λ)−1)ϕA, λ ∈ ρ(A), we have

MA(λ) −MA(ω) = (λ− ω)[γA(λ), γA(ω)], λ, ω ∈ ρ(A).

(ii) For γB(λ) := (1 + (λ − λ0)(B − λ)−1)ϕB, λ ∈ ρ(B), we have

MB(λ) −MB(ω) = (λ− ω)[γB(λ), γB(ω)], λ, ω ∈ ρ(B).

(iii) For λ ∈ ρ(A) ∩ ρ(B) we have MB(λ) = − 1
MA(λ) and

(A− λ)−1 − (B − λ)−1 = 1
MA(λ) [·, γA(λ)]γA(λ) = − 1

MB(λ) [·, γB(λ)]γB(λ).

Corollary 2.2. Let A, B and MA, MB be as in Proposition 2.1. Then the following hold.

(i) For λ ∈ ρ(A) we have λ ∈ σp(B) if and only if MA(λ) = 0.
(ii) For λ ∈ ρ(B) we have λ ∈ σp(A) if and only if MB(λ) = 0.

Proof. (i) Since the functions γA and MA are holomorphic in a neighbourhood of λ ∈ ρ(A), this follows 
from the resolvent formula in Proposition 2.1 (iii). Assertion (ii) follows in a similar way. �

The root subspace of A at λ is given by

Lλ(A) :=
∞⋃
j=1

ker (A− λ)j .

Let λ ∈ σp(A). The algebraic multiplicity of the eigenvalue λ is defined as dim Lλ(A) and the geometric 
multiplicity is defined as dim ker (A − λ). A finite ordered set of non-zero vectors {x0, . . . , xn−1} is called a 
Jordan chain of length n if (A − λ)x0 = 0 and (A − λ)xi = xi−1, i = 1, . . . , n − 1. The elements of a Jordan 
chain are linearly independent. The first n − 1 elements of a Jordan chain of length n form a Jordan chain
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of length n − 1. In the sequel the following will be used frequently: If {x0, x1} is a Jordan chain at some 
real eigenvalue λ then

[x0, x0] = [x0, (A− λ)x1] = [(A− λ)x0, x1] = 0. (2.2)

Hence the eigenvector x0 is a neutral vector in (K , [·, ·]).
A real isolated eigenvalue λ of A is called of positive (negative) type if all its corresponding eigenvectors 

are positive (negative, respectively). In this case we write λ ∈ σ++(A) (λ ∈ σ−−(A), respectively). Observe 
that for an isolated eigenvalue of positive or negative type there is no Jordan chain of length greater than 
one, that is, Lλ(A) = ker (A − λ) (see (2.2)) and hence the geometric and algebraic multiplicity coincide.

From now on we will suppose that the following assumption holds.

Assumption (I). Let A and B be selfadjoint operators in the Krein space (K , [·, ·]) such that (2.1) holds for 
some (and hence for all) λ0 ∈ ρ(A) ∩ ρ(B). Let I ⊂ R be an open interval and assume that ρ(B) ∩ I �= ∅
and that σ(A) ∩ I consists only of isolated eigenvalues which are poles of the resolvent of A.

Assumption (I) yields the following statements.

Proposition 2.3. Let A, B and I be as in Assumption (I).

(i) Any eigenvalue of infinite algebraic multiplicity of A in I is also an eigenvalue of infinite algebraic 
multiplicity of B.

(ii) If μ ∈ ρ(A) ∩I then either μ ∈ ρ(B) or μ ∈ σp(B) with dim ker (B−μ) = 1. If, in addition, μ ∈ σ±±(B)
then Lμ(B) = ker (B − μ).

(iii) If μ ∈ ρ(B) ∩I then either μ ∈ ρ(A) or μ ∈ σp(A) with dim ker (A −μ) = 1. If, in addition, μ ∈ σ±±(A)
then Lμ(A) = ker (A − μ).

Proof. Due to Assumption (I) an eigenvalue μ ∈ I of A is a pole of the resolvent; cf. [29,39]. Therefore, 
if μ is an eigenvalue of infinite algebraic multiplicity of A, then also the geometric multiplicity of μ is 
infinite. Due to (2.1), the dimensions of ker (A − μ) and ker (B − μ) differ at most by one. This implies 
that the geometric multiplicity of the eigenvalue μ of B is infinite, and hence (i) follows. In order to verify 
(ii) assume dim ker (B − μ) ≥ 2. As the operator A ∩ B is a one dimensional restriction of B we obtain 
dim ker (A ∩B − μ) ≥ 1 and, hence, dim ker (A − μ) ≥ 1, a contradiction to μ ∈ ρ(A). Eigenvectors with a 
Jordan chain of length greater than one are neutral (cf. (2.2)) and, hence, (ii) is shown. Statement (iii) is 
proved analogously. �

In the next lemma we relate sign type properties of eigenvalues of B in ρ(A) with the local behaviour of 
the function MA from Proposition 2.1, see also [50, Theorem 3.3].

Lemma 2.4. Let A, B and I be as in Assumption (I). Assume MA(μ) = 0 for some μ ∈ ρ(A) ∩ I. Then 
μ ∈ σp(B) and dim ker (B − μ) = 1. Moreover, the following assertions hold.

(i) μ ∈ σ±±(B) if and only if ±M ′
A(μ) > 0. In this case Lμ(B) = ker (B − μ).

(ii) μ ∈ σp(B) has a neutral eigenvector if and only if M ′
A(μ) = 0. In this case Lμ(B) �= ker (B − μ) and 

there exist nonzero elements x0 ∈ ker (B − μ), x1 ∈ Lμ(B) with (B − μ)x1 = x0 and (B − μ)x0 = 0
such that

[x0, x0] = M ′
A(μ) = 0 and [x1, x0] = 1

2M
′′
A(μ). (2.3)

Moreover, in this case, (Lμ(B), [·, ·]) is a Krein space with at least one positive and one negative element.
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Proof. By Corollary 2.2 MA(μ) = 0 implies μ ∈ σp(B) and dim ker (B−μ) = 1 follows from Proposition 2.3. 
In order to show (i) and (ii) we start with the following observation. For MA, ϕB , γB as in Proposition 2.1
and λ ∈ ρ(A) ∩ ρ(B) we conclude from Proposition 2.1 (iii):

MA(λ)γB(λ) = MA(λ)
(
1 + (λ− λ0)(B − λ)−1)ϕB

= MA(λ)
(
ϕB + (λ− λ0)

(
(A− λ)−1ϕB − 1

MA(λ) [ϕB , γA(λ)]γA(λ)
))

= (λ0 − λ)[ϕB , γA(λ)]γA(λ) + MA(λ)
(
1 + (λ− λ0)(A− λ)−1)ϕB . (2.4)

Then MA(μ) = 0 and μ ∈ ρ(A) ∩ R imply the existence of

x0 := lim
λ→μ

MA(λ)γB(λ) = (λ0 − μ)[ϕB , γA(μ)]γA(μ).

The vector x0 is nonzero. Indeed, for ω ∈ ρ(A) ∩ ρ(B), ω �= μ, it follows from Proposition 2.1 that

[x0, γB(ω)] = lim
λ→μ

[MA(λ)γB(λ), γB(ω)] = lim
λ→μ

MA(λ)MB(λ) −MB(ω)
λ− ω

= lim
λ→μ

MA(λ)
− 1

MA(λ) + 1
MA(ω)

λ− ω
= lim

λ→μ

−1 + MA(λ)
MA(ω)

λ− ω
= −1

μ− ω
�= 0.

Furthermore x0 ∈ ker (B − μ), since for ω ∈ ρ(B) we have

(B − ω)−1x0 = lim
λ→μ

(B − ω)−1MA(λ)γB(λ)

= lim
λ→μ

(B − ω)−1MA(λ)
(
1 + (λ− λ0)(B − λ)−1)ϕB

= lim
λ→μ

MA(λ)
λ− ω

(
(λ− ω)(B − ω)−1 + (λ− λ0)(B − λ)−1 − (λ− λ0)(B − ω)−1)ϕB

= lim
λ→μ

MA(λ)
λ− ω

(
(λ− λ0)(B − λ)−1 − (ω − λ0)(B − ω)−1)ϕB

= lim
λ→μ

MA(λ)
λ− ω

(γB(λ) − γB(ω)) = 1
μ− ω

x0. (2.5)

Moreover, Proposition 2.1 (ii) and (iii) imply

[x0, x0] = lim
λ,ω→μ

MA(λ)MA(ω)[γB(λ), γB(ω)] = lim
λ,ω→μ

MA(λ)MA(ω)
− 1

MA(λ) + 1
MA(ω)

λ− ω

= lim
λ,ω→μ

MA(λ) −MA(ω)
λ− ω

= lim
λ→μ

MA(λ) −MA(μ)
λ− μ

= M ′
A(μ).

This yields (i) and the first statement in (ii). In order to show the remaining statements of (ii) assume 
MA(μ) = M ′

A(μ) = 0. Relation (2.4) implies the existence of

x1 := lim
λ→μ

(MA(λ)γB(λ))′

= −[ϕB , γA(μ)]γA(μ) + (λ0 − μ)[ϕB , γ
′
A(μ)]γA(μ) + (λ0 − μ)[ϕB , γA(μ)]γ′

A(μ).
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We obtain

(B − ω)−1x1 = lim
λ→μ

(B − ω)−1 (MA(λ)γB(λ))′

= lim
λ→μ

(
(B − ω)−1M ′

A(λ)γB(λ) + (B − ω)−1MA(λ)γ′
B(λ)

)
. (2.6)

As in (2.5) one verifies

(B − ω)−1M ′
A(λ)γB(λ) = M ′

A(λ)
λ− ω

(γB(λ) − γB(ω))

and we have from Proposition 2.1 (ii) γ′
B(λ) = (B − λ)−1γB(λ). Hence (2.6) takes the form

(B − ω)−1x1 = lim
λ→μ

(
M ′

A(λ)
λ− ω

(γB(λ) − γB(ω)) + (B − ω)−1MA(λ)(B − λ)−1γB(λ)
)

and with M ′
A(μ) = 0 we conclude

(B − ω)−1x1 = lim
λ→μ

(
M ′

A(λ)γB(λ)
λ− ω

+ MA(λ)γ′
B(λ)

λ− ω
− (B − ω)−1MA(λ)γB(λ)

λ− ω

)

= lim
λ→μ

(
(MA(λ)γB(λ))′

λ− ω
− (B − ω)−1MA(λ)γB(λ)

λ− ω

)

= x1

μ− ω
− (B − ω)−1 x0

μ− ω
= x1

μ− ω
− x0

(μ− ω)2 .

This yields (B − μ)x1 = x0. Moreover, Proposition 2.1 (ii) and (iii) imply

[x1, x0] = lim
λ,ω→μ

[(MA(λ)γB(λ))′ ,MA(ω)γB(ω)] = lim
λ,ω→μ

d

dλ
[MA(λ)γB(λ),MA(ω)γB(ω)]

= lim
λ,ω→μ

d

dλ

(
MA(λ)MA(ω)

− 1
MA(λ) + 1

MA(ω)

λ− ω

)
= lim

λ,ω→μ

d

dλ

(
MA(λ) −MA(ω)

λ− ω

)

= lim
λ→μ

d

dλ

(
MA(λ)
λ− μ

)
= lim

λ→μ

(
M ′

A(λ)(λ− μ) −MA(λ)
(λ− μ)2

)
= 1

2M
′′
A(μ),

where the last equality follows from the power series expansion of MA in μ and MA(μ) = M ′
A(μ) = 0. By 

[46, Proposition I.3.2 and Theorem I.5.2] the space (Lμ(B), [·, ·]) is a Krein space and (ii) is shown. �
Lemma 2.5. Let A, B and I be as in Assumption (I) and let μ ∈ I∩σ++(A) (μ ∈ I∩σ−−(A)) with μ ∈ ρ(B). 
Then the function MA has a pole at μ of order one with

lim
λ↗μ

MA(λ) = +∞, lim
λ↘μ

MA(λ) = −∞
(

lim
λ↗μ

MA(λ) = −∞, lim
λ↘μ

MA(λ) = +∞, respectively
)
.

Proof. According to Proposition 2.3 Lμ(A) = ker (A −μ) is a one dimensional subspace. The corresponding 
Riesz–Dunford projection onto ker (A −μ) will be denoted by E. By Proposition 2.1 (i) we have γA(λ0) = ϕA

and
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MA(λ) = MA(λ̄0) + (λ− λ̄0)
[
(1 + (λ− λ0)(A− λ)−1)ϕA, ϕA

]
= MA(λ̄0) + (λ− λ̄0)[ϕA, ϕA] + (λ− λ̄0)(λ− λ0)

[
(A− λ)−1ϕA, ϕA

]
holds for all λ ∈ ρ(A). Since [EϕA, (I − E)ϕA] = 0 and the function

λ �→
[
(A− λ)−1(I − E)ϕA, (I − E)ϕA

]
is holomorphic in a neighbourhood of the isolated eigenvalue μ we conclude that MA can be written in the 
form

MA(λ) = h(λ) + (λ− λ̄0)(λ− λ0)
[
(A− λ)−1EϕA, EϕA

]
= h(λ) + (λ− λ̄0)(λ− λ0)

μ− λ

[
EϕA, EϕA

]
, (2.7)

where h is holomorphic in a neighbourhood of the point μ. Here we have also used (A − λ)−1EϕA =
(μ − λ)−1EϕA in the last equality.

Since by assumption μ ∈ ρ(B) we conclude from Corollary 2.2 (ii) that the function MB = −M−1
A has a 

zero at the point μ, that is, MA has a pole at μ. As h is holomorphic we obtain [EϕA, EϕA] �= 0 from (2.7). 
Assume now that μ ∈ σ++(A) (μ ∈ σ−−(A)). Then [EϕA, EϕA] > 0 ([EϕA, EϕA] < 0, respectively) and 
the statements in Lemma 2.5 follow from the representation (2.7). �

The preceding Lemmas 2.4 and 2.5 lead to the following interlacing of eigenvalues of A and of B.

Proposition 2.6. Let A, B and I be as in Assumption (I). Let μ1, μ2 ∈ ρ(B) ∩ I such that (μ1, μ2) ⊂ ρ(A)
and assume that μ1, μ2 ∈ σ±±(A). Then there exists μ ∈ (μ1, μ2) with μ ∈ σp(B) \ σ∓∓(B).

Proof. The function MA has poles of order one at μ1, μ2 and its behaviour near these poles is given by 
Lemma 2.5. Therefore, as MA is a holomorphic function on ρ(A), it is continuous on (μ1, μ2) ⊂ ρ(A) and 
there exists μ ∈ (μ1, μ2) with MA(μ) = 0 and ±M ′

A(μ) ≥ 0, hence the assertion follows from Lemma 2.4. �
Corollary 2.2 (ii) states the following: If μ is an eigenvalue of A in ρ(B) then the function MA has a pole 

at μ. In the next proposition we prove the same conclusion under a slightly different assumption: If μ is an 
eigenvalue of A of positive or of negative type and μ is no eigenvalue of the symmetric operator S = A ∩B, 
then MA has a pole at μ (and, moreover, μ belongs to the resolvent set of B).

Proposition 2.7. Let A, B and I be as in Assumption (I), let S = A ∩B and let μ ∈ I. Then the following 
hold.

(i) If μ ∈ σ±±(A)\σp(S) then MA has a pole of order one at μ and μ ∈ ρ(B).
(ii) If μ ∈ σ±±(B)\σp(S) then MB has a pole of order one at μ and μ ∈ ρ(A).

Proof. We verify assertion (i). The adjoint S+ of S = A ∩B is a closed linear relation with one dimensional 
multivalued part if domS is not dense, or an operator otherwise. In both cases S+ is a one dimensional 
extension of A and B, and in both cases we regard S+ as a linear relation and denote the elements in S+

in the form {f, f ′} where f ∈ domS+ and f ′ ∈ ranS+. Let λ0 be as in (2.1) and let ϕA ∈ K be as in 
Proposition 2.1 (i). By Proposition 2.1 (iii) we have for y ∈ K

(A− λ0)−1y − (B − λ0)−1y = 1 [y, ϕA]γA(λ0)

MA(λ0)
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and the left hand side (and, hence the right hand side) is zero if and only if y ∈ ran (S − λ0). Thus 
ϕA ∈ (ran (S − λ0))[⊥] = ker (S+ − λ0) and we have the direct sum decomposition

S+ = A +̇
{
α {ϕA, λ0ϕA} : α ∈ C

}
.

Accordingly we write {f, f ′} = {fA +αϕA, AfA +αλ0ϕA} ∈ S+ for some fA ∈ domA. Suppose now that μ
is an eigenvalue of positive or negative type of A such that μ /∈ σp(S), let gμ ∈ ker (A − μ) be nonzero and 
denote the orthogonal projection in (K , [·, ·]) onto the Hilbert (or anti-Hilbert) space (ker (A − μ), [·, ·]) by 
Pμ. Since A is selfadjoint we obtain

[f ′, gμ] − [f,Agμ] = [AfA + αλ0ϕA, gμ] − [fA + αϕA, Agμ]

= [αλ0ϕA, gμ] − [αϕA, μgμ] = α(λ0 − μ)[PμϕA, gμ].

Hence

PμϕA �= 0 (2.8)

as otherwise {gμ, Agμ} ∈ S++ = S and gμ ∈ domS and Sgμ = μgμ which is impossible by μ /∈ σp(S). On 
the other hand (see, e.g., [27, Proof of Theorem 1.1]), it follows for λ ∈ ρ(A) from Proposition 2.1 (i)

[(A− λ)−1ϕA, ϕA] = [γA(λ), γA(λ0)] − [ϕA, ϕA]
λ− λ0

= MA(λ)
(λ− λ0)(λ− λ0)

− MA(λ0)
(λ− λ0)(λ− λ0)

− [ϕA, ϕA]
λ− λ0

.

Thus, if the function MA admits an analytic continuation into the point μ, then by the above formula also 
the function λ �→ [(A − λ)−1ϕA, ϕA] admits an analytic continuation into μ and

[PμϕA, ϕA] = − 1
2πi

∫
Cμ

[
(A− λ)−1ϕA, ϕA

]
dλ = 0,

where the above contour integral is along a sufficiently small circle Cμ containing μ. As (ker (A − μ), [·, ·])
is a Hilbert (or anti-Hilbert) space this implies PμϕA = 0; a contradiction to (2.8). Thus MA cannot be 
continued analytically into μ. As μ ∈ σ±±(A), this pole is of order one.

The same reasoning applies to the first assertion in (ii). Hence every eigenvalue of positive or negative 
type of B which is not an eigenvalue of S is a pole of first order of MB.

In order to complete the proof of (i) we have to show μ ∈ ρ(B). As μ /∈ σp(S) the dimension of ker (B−μ)
is at most one. By the above reasoning MA has a pole at μ, hence MB = −M−1

A has a zero at μ. It then 
follows from the first assertion in (ii) that μ /∈ σ±±(B). Thus it remains to exclude the possibility of a 
neutral eigenvector of B corresponding to μ. In fact, if there is a neutral eigenvector there exists a Jordan 
chain of length greater than one which results in a pole of at least second order of the resolvent of B at μ. 
But as μ ∈ σ±±(A) the resolvent of A, γA and, as shown above, also MA have poles of first order at μ. 
Therefore by Proposition 2.1 (iii) the resolvent of B has a pole of at most first order at μ; a contradiction. 
We have shown μ ∈ ρ(B). �
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3. Rank one perturbations of nonnegative operators and eigenvalue estimates

3.1. Nonnegative operators, operators with one negative square, and related classes of functions

In this section we assume, in addition to (2.1), that A is nonnegative in the Krein space (K , [·, ·]), i.e.

[Ax, x] ≥ 0, x ∈ domA.

This implies, in particular, that σ(A) ⊂ R. From the fact that A ∩B is a symmetric operator which is a one 
dimensional restriction of A and B it follows that B is nonnegative or B has one negative square, which 
is equivalent to [Bx, x] < 0 for some x �= 0 in this setting. We shall write κB = 0 if B is nonnegative and 
κB = 1 if B has one negative square. Clearly, if κB = 0 then σ(B) ⊂ R. If κB = 1 then the nonreal spectrum 
of B consists of at most one pair of isolated eigenvalues symmetric to the real line; cf. [15,20,46].

The following proposition provides additional information on the sign types of the (isolated) spectral 
points of A and B; it is a special case of [15, Theorem 3.1], see also [46].

Proposition 3.1. Let A, B be selfadjoint operators in (K , [·, ·]) which satisfy (2.1) and assume that A is 
nonnegative. Then the following hold.

(i) The isolated positive (negative) eigenvalues of A belong to σ++(A) (σ−−(A), respectively).
(ii) If κB = 0 then the isolated positive (negative) eigenvalues of B belong to σ++(B) (σ−−(B), respec-

tively).
(iii) If κB = 1 then there is at most one isolated eigenvalue μ ∈ R, μ �= 0, such that μ /∈ σ++(B) ∩R

+ and 
μ /∈ σ−−(B) ∩ R

−.

In the present situation the functions MA and MB in Proposition 2.1 belong to special classes of 
functions introduced and studied in [14,15] and hence admit particular representations in terms of 
Nevanlinna and generalized Nevanlinna functions with one negative square. Recall first that a com-
plex valued function N piecewise meromorphic in C \ R and symmetric with respect to the real axis 
belongs to the class of generalized Nevanlinna functions Nκ with κ ∈ N0 negative squares if the ker-
nel

N(zi) −N(zj)
zi − z̄j

has κ negative squares; cf. [42]. The class N0 is the class of Nevanlinna functions.
The following definition is taken from [14], see also [14, Theorem 2].

Definition 3.2. A complex valued function M meromorphic in C \R and symmetric with respect to the real 
axis belongs to the class Dκ if for some, and hence for every, z in the domain of holomorphy of M , there 
exists a generalized Nevanlinna function N ∈ Nκ holomorphic at z and a rational function g holomorphic 
in C \ {z, z} such that

λ

(λ− z)(λ− z)M(λ) = N(λ) + g(λ) (3.1)

holds for all points λ where M , N and g are holomorphic. Here C denotes the extended complex plane, 
C = C ∪ {∞}.
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Proposition 3.3. Let A, B be selfadjoint operators in the Krein space (K , [·, ·]) which satisfy (2.1), assume 
that A is nonnegative, and let MA and MB be as in Proposition 2.1. Then

MA ∈ D0 and MB ∈ D0 ∪ D1. (3.2)

Furthermore, the following hold.

(i) If MB ∈ D0 then all positive (negative) zeros μ of MA satisfy M ′
A(μ) > 0 (M ′

A(μ) < 0, respectively).
(ii) If MB ∈ D1 then with the possible exception of at most one point μ0 all positive zeros μ of MA satisfy 

M ′
A(μ) > 0 and all negative zeros μ of MA satisfy M ′

A(μ) < 0. If this exceptional zero μ0 is in R \ {0}
then it is a zero of MA of at most order three. If it is a zero of order three then M ′′′

A (μ0) > 0 for 
μ0 ∈ R

+ and M ′′′
A (μ0) < 0 for μ0 ∈ R

−.
(iii) If there is a positive (negative) zero μ of MA such that M ′

A(μ) ≤ 0 (M ′
A(μ) ≥ 0, respectively) then 

MB ∈ D1.

Proof. Choose λ0 as in (2.1). Then Proposition 2.1 (i) with ω = λ0 gives

λ

(λ− λ0)(λ− λ0)
MA(λ) = NA(λ) + λ

(λ− λ0)(λ− λ0)
(
MA(λ0) + (λ− λ0)[ϕA, ϕA]

)
,

where NA(λ) := [λ(A − λ)−1ϕA, ϕA], λ ∈ ρ(A). A straightforward computation yields

NA(λ) −NA(ω)
λ− ω

=
[
A(A− λ)−1ϕA, (A− ω)−1ϕA

]
and, as A is nonnegative, NA is a Nevanlinna function. This implies MA ∈ D0. Making use of Propo-
sition 2.1 (ii) and the fact that B is nonnegative or has one negative square the same argument shows 
MB ∈ D0 ∪ D1. Since

MB = − 1
MA

on ρ(A) ∩ ρ(B) (3.3)

and ρ(A) ∩ ρ(B) is a dense subset in C the zeros of MA correspond to the poles of MB and vice versa. The 
order of a zero of MA is equal to the order of the corresponding pole of MB. Moreover, if MB has a pole of 
first order at μ then the residue at μ of MB coincides with −1

M ′
A(μ) and μ is a zero of first order of MA.

From Proposition 2.1 (ii) it follows that the poles of MB in R coincide with the poles of the function 
NB(λ) := [λ(B−λ)−1ϕB , ϕB ] in R. If MB ∈ D0 then NB ∈ N0 and, hence, all poles of NB are of first order 
with negative residue, see, e.g., [21,25]. Hence all poles of MB in R+ (R−) are of first order with negative 
(positive, respectively) residue and (3.3) implies assertion (i). Assertion (ii) follows in the same way when 
taking into account that MB ∈ D1 implies NB ∈ N1 and using standard properties of N1-functions; cf. 
[21,25]. Finally, if μ is a positive (negative) zero of MA with M ′

A(μ) ≤ 0 (M ′
A(μ) ≥ 0, respectively) then 

MB has a pole at μ which is not of first order with a negative (positive, respectively) residue in R+ (R−, 
respectively). Therefore, NB ∈ N1 and MB ∈ D1 follow, which shows (iii). �

The next lemma provides some more properties of the function MA at the point 0.

Lemma 3.4. Let the assumptions be as in Proposition 3.3. Then the following hold.

(i) If 0 is a pole of MA then 0 is a pole of first or of second order. If 0 is a pole of second order then

lim
λ↗0

MA(λ) = lim
λ↘0

MA(λ) = −∞.
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(ii) If MB ∈ D1 and MA is holomorphic at 0 then

MA(0) > 0.

(iii) Assume that MA is holomorphic at 0 and let 0 be a zero of MA. Then 0 is a zero of at most second 
order and in this case we have

M ′′
A(0) > 0.

Proof. (i) Let 0 be a pole of MA. As MA ∈ D0 it follows from [14, Definition 3 and Theorem 2 (iii)] that 0 is 
either a point of holomorphy or a pole of first order with a negative residue at 0 of the function λ �→ λMA(λ). 
Therefore 0 is a pole of at most order two of MA and, if 0 is a pole of second order of MA, it satisfies

−∞ < lim
λ→0

λ2MA(λ) < 0

and (i) is proved.
(ii) If MB ∈ D1 then [15, Theorem 2.4] implies that 0 is not a generalized zero of nonpositive type of 

λ �→ λMA(λ). For the notion of a generalized zero of nonpositive type we refer to [43,47], see also [14, 
Section 3.1]. Under the assumption that MA is holomorphic at 0, this is equivalent to (ii), see, e.g., [14, 
Section 3.1] and [43,47].

(iii) Consider (3.1) with z = 0,

λ−1MA(λ) = NA(λ) + gA(λ), (3.4)

where NA is a Nevanlinna function holomorphic at 0 and gA is a rational function holomorphic in the 
extended complex plane with a possible pole at 0. Assume

MA(0) = M ′
A(0) = 0. (3.5)

Then the left hand side of (3.4) is holomorphic at 0 and hence gA is equal to a real constant c, and (3.4)
becomes

MA(λ) = λ (NA(λ) + c) . (3.6)

We have M ′
A(λ) = NA(λ) + c + λN ′

A(λ) and M ′′
A(λ) = 2N ′

A(λ) + λN ′′
A(λ). In particular

M ′
A(0) = NA(0) + c and M ′′

A(0) = 2N ′
A(0).

It follows from (3.5) that the function NA + c vanishes at 0. It is well-known that non-constant Nevanlinna 
functions have a positive derivative in real points of holomorphy. Here, NA + c is not identically zero, as 
this would, by (3.6), imply that MA ≡ 0, which is a contradiction to Proposition 2.1 (iii). We conclude

M ′′
A(0) = 2(NA + c)′(0) > 0,

and hence 0 is a zero of at most second order of MA. �
3.2. Main results: eigenvalue estimates

For an interval I ⊂ R we denote the numbers of distinct eigenvalues of A and B in I by nA(I) and nB(I), 
respectively,
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nA(I) = �
{
λ : λ ∈ I ∩ σp(A)

}
and nB(I) = �

{
λ : λ ∈ I ∩ σp(B)

}
,

and we set

nA,B(I) = �
{
λ : λ ∈ I ∩ σp(A) ∩ σp(B)

}
.

Here, multiplicities of eigenvalues are not counted.
The next theorem provides sharp estimates from below and above on the number of distinct eigenvalues 

of B in terms of the number of distinct eigenvalues of A. The last assertion on the infinite number of distinct 
eigenvalues of A and B in I can be viewed as a special case of [13, Theorem 4.3].

Theorem 3.5. Let A, B and I be as in Assumption (I) and assume, in addition, that A is nonnegative. Then 
B is nonnegative or has one negative square and if nA(I) < ∞ then the following estimates hold.

(i) If 0 /∈ I then

nA(I) − nA,B(I) − 1 ≤ nB(I) ≤ nA(I) + nA,B(I) +
{

1 if κB = 0,
3 if κB = 1.

(ii) If 0 ∈ I then

nA(I) − nA,B(I) − 2 ≤ nB(I) ≤ nA(I) + nA,B(I) +
{

2 if κB = 0,
3 if κB = 1.

Each of the estimates in (i) and (ii) is sharp. Moreover, nA(I) = ∞ if and only if nB(I) = ∞.

The upper and lower estimates in the next corollary follow from the inequalities nA,B(I) ≤ nA(I) and 
−nB(I) ≤ −nA,B(I), respectively.

Corollary 3.6. Let the assumptions be as in Theorem 3.5. Then the following estimates hold.

(i) If 0 /∈ I then

nA(I) − 1
2 ≤ nB(I) ≤ 2nA(I) +

{
1 if κB = 0,
3 if κB = 1.

(ii) If 0 ∈ I then

nA(I) − 2
2 ≤ nB(I) ≤ 2nA(I) +

{
2 if κB = 0,
3 if κB = 1.

Each of the estimates in (i) and (ii) is sharp.

The next corollary treats the case nA,B(I) = 0 and will play an important role in the proof of Theorem 3.9.

Corollary 3.7. Let the assumptions be as in Theorem 3.5 and assume, in addition, that I∩σp(A) ∩σp(B) = ∅. 
Then the following estimates hold.
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(i) If 0 /∈ I then

nA(I) − 1 ≤ nB(I) ≤ nA(I) +
{

1 if κB = 0,
3 if κB = 1.

(ii) If 0 ∈ I then

nA(I) − 2 ≤ nB(I) ≤ nA(I) +
{

2 if κB = 0,
3 if κB = 1.

Each of the estimates in (i) and (ii) is sharp.

In the following we provide in Theorem 3.9 a variant of Theorem 3.5, where the total multiplicity mB(I)
of the eigenvalues of B in I is estimated by the total multiplicity mA(I) of the eigenvalues of A in I. We 
start by stating a theorem which focuses on the total multiplicity of the eigenvalue 0.

Theorem 3.8. Let A, B and I be as in Assumption (I) and assume, in addition, that A is nonnegative, 0 ∈ I

and that mA({0}) < ∞. Then

|mA({0}) −mB({0})| ≤ 2

and the estimate is sharp.

The sharp estimate in Theorem 3.8 will be used in the proof of the next theorem.

Theorem 3.9. Let A, B and I be as in Assumption (I) and assume, in addition, that A is nonnegative and 
that mA(I) < ∞. Then the following estimates hold.

(i) If 0 /∈ I then

mA(I) − 1 ≤ mB(I) ≤ mA(I) +
{

1 if κB = 0,
3 if κB = 1.

(ii) If 0 ∈ I and 0 /∈ σp(A) then

mA(I) − 2 ≤ mB(I) ≤ mA(I) +
{

2 if κB = 0,
3 if κB = 1.

(iii) If 0 ∈ I and 0 ∈ σp(A) then

mA(I) − 4 ≤ mB(I) ≤ mA(I) +
{

4 if κB = 0,
6 if κB = 1.

Moreover, mA(I) = ∞ if and only if mB(I) = ∞.

Remark 3.10. It follows immediately from Corollary 3.7 that the estimates in Theorem 3.9 (i) and (ii) are 
sharp. It is not clear if estimate (iii) is sharp as well.



878 J. Behrndt et al. / J. Math. Anal. Appl. 439 (2016) 864–895
In the following subsections the proofs of Theorems 3.5, 3.8 and 3.9 will be given. The proofs of Theo-
rems 3.5 and 3.9 make use of similar techniques and are related; they are presented in Sections 3.3 and 3.4. 
The proof of Theorem 3.8 is independent from the proofs of Theorems 3.5 and 3.9, and therefore postponed 
to Section 3.5.

3.3. Proof of Theorem 3.5

Theorem 3.5 is proved in eight separate steps, the proof of Theorem 3.9 is given afterwards. In Steps 1 
and 2 the lower estimates are shown and in Steps 3–5 the upper estimates are verified. The sharpness of 
the estimates is shown in Steps 6 and 7 for two particularly interesting situations; from the construction it 
is clear how the sharpness of the remaining estimates follows. Finally, in Step 8 we verify the assertion on 
the infiniteness of the eigenvalues.

Step 1. Lower estimate in (i). We verify the estimate

nA(I) − nA,B(I) − 1 ≤ nB(I). (3.7)

By assumption 0 /∈ I and we have I ⊂ R
+ or I ⊂ R

−. We discuss the case I ⊂ R
+ only; the simple 

modifications for the case I ⊂ R
− are left to the reader. Then, as A is nonnegative, all eigenvalues of 

A in I are of positive type, that is σ(A) ∩ I ⊂ σ++(A); cf. Proposition 3.1 (i). As nA(I) < ∞ we have 
nA,B(I) < ∞. If nA(I) − 1 − nA,B(I) ≤ nA,B(I) then the estimate (3.7) holds since nA,B(I) ≤ nB(I). 
If nA(I) − 1 − nA,B(I) > nA,B(I) then there exist at least nA(I) − 1 − 2nA,B(I) pairs of eigenvalues in 
σ++(A) ∩ ρ(B) to which Proposition 2.6 can be applied. This leads to nA(I) − 1 − 2nA,B(I) eigenvalues of 
B in ρ(A) ∩ I and since there are also nA,B(I) eigenvalues of B in σ(A) ∩ I we obtain the estimate (3.7).

Step 2. Lower estimate in (ii). Let 0 ∈ I and set I± = I ∩ R
±. In order to show the estimate

nA(I) − nA,B(I) − 2 ≤ nB(I) (3.8)

observe that by Step 1 the estimates

nA(I±) − nA,B(I±) − 1 ≤ nB(I±) (3.9)

hold. Clearly,

nA(I+) + nA(I−) =
{
nA(I) if 0 /∈ σp(A),
nA(I) − 1 if 0 ∈ σp(A)

and

nA,B(I+) + nA,B(I−) =
{
nA,B(I) if 0 /∈ σp(A) ∩ σp(B),
nA,B(I) − 1 if 0 ∈ σp(A) ∩ σp(B).

Together with (3.9) this yields

nB(I) =
{
nB(I+) + nB(I−) if 0 /∈ σp(B),
nB(I+) + nB(I−) + 1 if 0 ∈ σp(B),

≥
{
nA(I+) − nA,B(I+) + nA(I−) − nA,B(I−) − 2 if 0 /∈ σp(B),
n (I ) − n (I ) + n (I ) − n (I ) − 1 if 0 ∈ σ (B),
A + A,B + A − A,B − p
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=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nA(I) − nA,B(I) − 2 if 0 /∈ σp(B), 0 /∈ σp(A),
nA(I) − nA,B(I) − 3 if 0 /∈ σp(B), 0 ∈ σp(A),
nA(I) − nA,B(I) − 1 if 0 ∈ σp(B), 0 /∈ σp(A),
nA(I) − nA,B(I) − 1 if 0 ∈ σp(B), 0 ∈ σp(A).

It remains to show estimate (3.8) in the case 0 �∈ σp(B), 0 ∈ σp(A). Assume first that I−∩σ(A) is empty. 
Then nB(I−) ≥ 0, nA(I+) = nA(I) − 1, and (3.9) yield

nB(I) ≥ nB(I+) ≥ nA(I+) − nA,B(I+) − 1 = nA(I) − nA,B(I) − 2,

that is, (3.8) holds. A similar reasoning implies (3.8) for the case that I+ ∩ σ(A) is empty. Now we assume 
I±∩σ(A) �= ∅. Denote by λ− the largest eigenvalue of A in I− and by λ+ the smallest eigenvalue of A in I+. 
Assume first λ− ∈ σp(B) and apply the lower estimate from Step 1 to the intervals Iλ− := (−∞, λ−) ∩ I−
and I+:

nB(I) = nB(Iλ−) + nB([λ−, 0]) + nB(I+)

≥ nA(Iλ−) − nA,B(Iλ−) − 1 + nB([λ−, 0]) + nA(I+) − nA,B(I+) − 1

= nA(Iλ−) + nA(I+) −
(
nA,B(Iλ−) + nA,B(I+)

)
+ nB([λ−, 0]) − 2.

In the present situation we have

nA(I) = nA(Iλ−) + nA([λ−, 0]) + nA(I+) = nA(Iλ−) + 2 + nA(I+)

nA,B(I) = nA,B(Iλ−) + nA,B([λ−, 0]) + nA,B(I+) = nA,B(Iλ−) + 1 + nA,B(I+)

and hence we obtain

nB(I) ≥ nA(I) − 2 −
(
nA,B(I) − 1

)
+ nB([λ−, 0]) − 2

= nA(I) − nA,B(I) + nB([λ−, 0]) − 3.

Together with nB([λ−, 0]) ≥ 1 we conclude (3.8). In a similar way the estimate (3.8) follows if λ+ ∈ σp(B). 
Thus it remains to show (3.8) for 0 ∈ σp(A), 0 /∈ σp(B), and λ± /∈ σp(B). For this we consider the function 
MA : ρ(A) → C from Proposition 2.1 which is continuous and real valued on ρ(A) ∩R. By Corollary 2.2 (ii) 
the point 0 is a pole of MA and by Lemma 3.4 (i) it is of first or of second order. If 0 is a pole of first order 
we conclude from λ− ∈ σ−−(A), λ+ ∈ σ++(A), and Lemma 2.5 that MA has a zero either in (λ−, 0) or in 
(0, λ+), and hence an eigenvalue of B; cf. Corollary 2.2 (i). If 0 is a pole of second order, then MA has zeros 
(and, hence, eigenvalues of B) in both intervals (λ−, 0) and (0, λ+); cf. Lemma 3.4 (i), Corollary 2.2 (i), and 
Lemma 2.5. Thus in both cases there is at least one eigenvalue of B in the interval (λ−, λ+). Therefore, for 
ε > 0 sufficiently small we conclude

nB([λ− + ε, λ+ − ε]) ≥ 1, λ− + ε < 0 < λ+ − ε. (3.10)

Let us apply the lower estimate from Step 1 to Iλ−+ε = (−∞, λ− + ε) ∩ I− and Iλ+−ε = (λ+ − ε, ∞) ∩ I+. 
Then, with (3.10) we obtain

nB(I) = nB(Iλ−+ε) + nB([λ− + ε, λ+ − ε]) + nB(Iλ+−ε)

≥ nA(Iλ−+ε) − nA,B(Iλ−+ε) − 1 + nB([λ− + ε, λ+ − ε] + nA(Iλ+−ε) − nA,B(Iλ+−ε) − 1

≥ nA(Iλ−+ε) − nA,B(Iλ−+ε) + nA(Iλ+−ε) − nA,B(Iλ+−ε) − 1

= nA(I) − nA([λ− + ε, λ+ − ε]) − (nA,B(I) − nA,B([λ− + ε, λ+ − ε])) − 1.
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In the present setting we have nA([λ− + ε, λ+ − ε]) = 1 and nA,B([λ− + ε, λ+ − ε]) = 0. This implies the 
estimate (3.8).

Step 3. Upper estimate in (i) and (ii) if κB = 0. If B is nonnegative these two estimates follow immediately 
from (3.7) and (3.8) by interchanging the roles of A and B.

Step 4. Upper estimate in (i) if κB = 1. We show that the inequality

nB(I) ≤ nA(I) + nA,B(I) + 3 (3.11)

holds if 0 /∈ I and B has one negative square. Let us again discuss the case I ⊂ R
+ only; the simple 

modifications for the case I ⊂ R
− are left to the reader. Since I ∩ σ(A) consists of nA(I) distinct eigen-

values the set I ∩ ρ(A) consists of nA(I) + 1 open subintervals Ik, 1 ≤ k ≤ nA(I) + 1. We use that 
MA is continuous and real valued on each subinterval Ik, and that by Corollary 2.2 (i) the zeros of MA

in Ik coincide with the eigenvalues of B in Ik. As κB = 1 there is at most one point ν ∈ σp(B) ∩ I

with ν /∈ σ++(B) by Proposition 3.1 (iii). If ν ∈ σp(A) then Ik ∩ σ(B), 1 ≤ k ≤ nA(I) + 1, is con-
tained in σ++(B) according to Proposition 3.1 (iii) and each zero μ in Ik of MA satisfies M ′

A(μ) > 0 by 
Lemma 2.4 (i). Thus in each subinterval Ik, 1 ≤ k ≤ nA(I) + 1, there is at most one eigenvalue of B
so that the set I ∩ ρ(A) contains at most nA(I) + 1 eigenvalues of B. Clearly, the set I ∩ σ(A) contains 
nA,B(I) eigenvalues of B and hence nB(I) ≤ nA(I) + nA,B(I) + 1. In particular, (3.11) follows in the case 
ν ∈ σp(A). It remains to show estimate (3.11) in the case ν ∈ ρ(A). Then ν belongs to some subinter-
val Ij for some j with 1 ≤ j ≤ nA(I) + 1 and the function MA satisfies M ′

A(ν) ≤ 0 by Lemma 2.4 (i). 
Since all other eigenvalues μ of B in I ∩ ρ(A) belong to σ++(B) it follows from Lemma 2.4 (i) that 
M ′

A(μ) > 0. Hence in Ij there are at most three eigenvalues of B and in each of the subintervals Ik, 
1 ≤ k ≤ nA(I) + 1, k �= j, there is at most one eigenvalue of B. Summing up it follows that the set 
I ∩ ρ(A) contains at most nA(I) + 3 eigenvalues and, as I ∩ σ(A) contains nA,B(I) eigenvalues of B, (3.11)
is shown.

Step 5. Upper estimate in (ii) if κB = 1. In this step we discuss the case 0 ∈ I and B has one negative 
square. We verify the inequality

nB(I) ≤ nA(I) + nA,B(I) + 3. (3.12)

In order to show this we consider again the open subintervals Ik, 1 ≤ k ≤ nA(I) + 1, as in Step 4. 
Assume that 0 ∈ σp(A). Then the arguments used in the proof of Step 4 remain valid and it follows that 
in at most one interval Ij there might be at most three zeros of MA, in all other intervals Ik there is at 
most one zero. This implies (3.12) if 0 ∈ σp(A). Let us now discuss the case 0 ∈ ρ(A) so that 0 ∈ Ij
for some j. If MA has two or three zeros in one of the other subintervals Ik, k �= j, then according to 
Lemma 2.4 (i) one of these zeros is an eigenvalue μ of B which does not belong to σ++(B) (σ−−(B)) 
if Ik ⊂ R

+ (Ik ⊂ R
−, respectively). Moreover, by Proposition 3.3 (iii) the function MB belongs to the 

class D1 and by Lemma 3.4 (ii) we have MA(0) > 0. But this implies that there are no zeros of MA in 
Ij as otherwise M ′

A(μ−) ≥ 0 for some μ− < 0 in Ij or M ′
A(μ+) ≤ 0 for some μ+ > 0 in Ij which is 

impossible by Proposition 3.3 (ii). Hence if 0 ∈ Ij and MA has two or three zeros in one of the other 
subintervals Ik then (3.12) is valid. It remains to discuss the case 0 ∈ Ij and MA has at most one zero in 
each of the other subintervals Ik, k �= j. Suppose that MA(0) > 0. By Proposition 3.3 (i) and (ii) there 
are at most two zeros of MA in Ij and (3.12) is true for MA(0) > 0. In the case MA(0) = 0 three other 
zeros in Ij would imply MB ∈ D1 by Proposition 3.3 (iii) and hence MA(0) > 0 by Lemma 3.4 (ii). Thus 
only two zeros in Ij\{0} may exist and (3.12) holds also in the case MA(0) = 0. Finally, if MA(0) <
0 then again three zeros in Ij would imply MB ∈ D1 by Proposition 3.3 (iii) and hence MA(0) > 0
by Lemma 3.4 (ii). Thus also in this case there are at most two zeros of MA in Ij . We have proved 
(3.12).



J. Behrndt et al. / J. Math. Anal. Appl. 439 (2016) 864–895 881
Step 6. Sharpness of the upper estimate in (i) if κB = 1. We discuss the case 0 /∈ I. Our aim is to show 
that the estimate

nB(I) ≤ nA(I) + nA,B(I) + 3 (3.13)

is sharp. For this we show that there exist matrices A, B and an open interval I such that Assumption (I)
is satisfied and equality holds in (3.13). Here we give an idea how to construct specific examples fitting to 
a given eigenvalue distribution. For explicit examples, see Section 3.6. Let 0 < λ0 < λ1 < · · · < λn < λn+1
for some n ∈ N and define I := (λ0, λn+1). Choose a rational function M symmetric with respect to the 
real axis such that:

– M has poles of first order in 0 and in each λi. These are the only poles of M and M is monotonously 
increasing in every interval (λ1, λ2), . . . , (λn, λn+1).

– M has three zeros μ1 < μ2 < μ3 in the interval (λ0, λ1) such that M ′(μ1) > 0, M ′(μ2) < 0, and 
M ′(μ3) > 0.

– limx→±∞ M(x) ∈ R\{0}.
– M ∈ D0 and the function λ �→ − 1

M(λ) belongs to D1.

We leave it to the reader to verify that such functions exist. An example for n = 0 is the function M1 in 
Fig. 1 in Section 3.6.

Then M belongs to the class of generalized Nevanlinna functions and according to [9, Corollary 3.5] there 
exists a Pontryagin space (K , [·, ·]), a (possibly nondensely defined) symmetric operator S with defect one 
and a so-called boundary triplet {C, Γ0, Γ1} for the adjoint S+ such that the corresponding Weyl function 
coincides with M . Let A := S+ � ker Γ0. The operator S and the boundary triplet {C, Γ0, Γ1} can be 
chosen in such a way that K is finite dimensional, σ(A) coincides with the poles of M and, in particular, 
A has no multivalued part as M has no pole at ±∞, see also [33,42]. It is important to note that σ(A) ∩ I

consists of the n distinct eigenvalues λ1, . . . , λn. In the following considerations we make use of the fact that 
{C, Γ1, −Γ0} is a boundary triple for S+ with Weyl function −M−1. Let B := S+ � ker Γ1. Then B is a 
selfadjoint matrix with κB = 1 (see, e.g. [14, Lemma 7]). As both A and B are selfadjoint extensions of the 
symmetric (nondensely defined) matrix S with defect one the difference of A and B and of their resolvents 
is a rank one operator, so that Assumption (I) is satisfied. Moreover, the zeros of M in I coincide with 
σ(B) ∩ I. Hence B has 3 eigenvalues in the interval (λ0, λ1) and one eigenvalue in each of the n intervals 
(λ1, λ2), . . . , (λn, λn+1), that is, nB(I) = n + 3 and equality in (3.13) is shown for the case nA,B(I) = 0. In 
order to obtain a sharp estimate in the remaining cases add orthogonally to A and B a nonnegative matrix 
C such that σp(C) ⊂ σp(A). Then,

(
A 0
0 C

)
and

(
B 0
0 C

)
(3.14)

differ by a rank one matrix and have nC(I) common eigenvalues in the interval I. This shows that (3.13) is 
sharp.

Step 7. Sharpness of the lower estimate in (ii). In order to show that for 0 ∈ I the estimate

nA(I) − nA,B(I) − 2 ≤ nB(I) (3.15)

is sharp let λ0 < 0 < λ1 < · · · < λn with n ∈ N and consider a rational function M such that:

– M has poles of first order at each λi. These are the only poles of M and M is monotonously increasing 
in every interval (λ1, λ2), . . . , (λn−1, λn).
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– M is positive in the interval (λ0, λ1).
– limx→±∞ M(x) ∈ R\{0} and M ∈ D0.

An example for such a function in the case n = 2 is given by M(λ) := M2(λ) + 2, where M2 is the function 
in Fig. 2 in Section 3.6.

The zeros of M in (λj , λj+1), j = 1, . . . , n − 1, are denoted by μj . As above it follows that there exist
a Pontryagin space and selfadjoint matrices A and B which differ by a rank one matrix such that λi, 
i = 0, . . . , n, are eigenvalues of A and μj , j = 1, . . . , n − 1, are eigenvalues of B. Hence for ε > 0 sufficiently 
small A has n + 1 distinct eigenvalues in the interval I = (λ0 − ε, λn + ε) and B has n − 1 eigenvalues in I, 
that is, (3.15) is sharp if nA,B(I) = 0. In the case nA,B(I) > 0 one obtains that (3.15) is sharp by adding 
orthogonally a suitable nonnegative matrix C as in (3.14).

Step 8. Proof of nA(I) = ∞ if and only if nB(I) = ∞. If nA,B(I) = ∞ then nB(I) = ∞ = nA(I) and 
the assertion is true. If nA(I) = ∞ and nA,B(I) < ∞ then there are infinitely many pairs of eigenvalues 
in σ++(A) or σ−−(A) to which Proposition 2.6 can be applied. This yields nB(I) = ∞. Conversely, if 
nB(I) = ∞ then the same reasoning implies nA(I) = ∞ and the assertion is proved.

3.4. Proof of Theorem 3.9

The proof of Theorem 3.9 uses Corollary 3.7 and is done in eleven steps. We decompose the space K into 
the spectral subspace related to the common eigenvalues of A and B and its [·, ·]-orthogonal companion. 
Then Corollary 3.7 can be applied to the restrictions of A and B to this [·, ·]-orthogonal companion and we 
prove the estimates in (i), (ii) and (iii).

Step 1. Decomposition of K for 0 /∈ I. Let us assume that I ⊂ R
+. The spectral subspace of A cor-

responding to I is an mA(I)-dimensional Hilbert space by Proposition 3.1 (i). The subspace E+ spanned 
by the eigenvectors of the (possibly nondensely defined) symmetric operator S = A ∩ B in I is invariant 
for S, and hence for A and B. As E+ is a subset of the spectral subspace of A corresponding to I, the space 
(E+, [·, ·]) is a (finite dimensional) Hilbert space. Denote the restriction of S to E+ by S+. With respect to 
the decomposition K = E+[+̇]E [⊥]

+ we have

S =
(
S+ 0
0 S′

)
, A =

(
S+ 0
0 A′

)
and B =

(
S+ 0
0 B′

)
,

with S′ symmetric, σp(S′) ∩ I = ∅, and A′ and B′ selfadjoint in the Krein space (E [⊥]
+ , [·, ·]). Therefore

mA(I) = mS+(I) + mA′(I) and mB(I) = mS+(I) + mB′(I). (3.16)

We claim that A′ and B′ satisfy the assumptions in Corollary 3.7. Indeed, it is easy to see that A′, B′ and 
I satisfy Assumption (I) and since A is nonnegative in the Krein space K the operator A′ is nonnegative 
in the Krein space E [⊥]

+ . Furthermore, as σp(S′) ∩ I = ∅ and all eigenvalues of A′ in I are in σ++(A′) by 
Proposition 3.1 (i), we conclude from Proposition 2.7 (i) that

σp(A′) ∩ σp(B′) ∩ I = ∅. (3.17)

Step 2. Lower estimate in (i). As I ⊂ R
+, all eigenvalues of the nonnegative operator A′ in I are of positive 

type and belong to ρ(B′). According to Proposition 2.3 (iii) each of these eigenvalues is of multiplicity one 
and therefore

nA′(I) = mA′(I). (3.18)
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As nB′(I) ≤ mB′(I), Corollary 3.7 (i) together with (3.16) implies the estimate

mA(I) − 1 ≤ mB(I). (3.19)

Step 3. Upper estimate in (i) if κB = 0. The estimate follows immediately from (3.19) by interchanging 
the roles of A and B.

Step 4. Upper estimate in (i) if κB = 1. In this case κB′ = 1 and by Proposition 3.1 (iii) there is at most 
one eigenvalue μ of B′ in I which is not of positive type. If μ is of negative type it has multiplicity one; 
cf. Proposition 2.3 (ii). All other eigenvalues of B′ in I are of positive type, belong to ρ(A′) and hence have 
multiplicity one according to Proposition 3.1 (iii) and Proposition 2.3 (ii). Therefore nB′(I) = mB′(I) and 
as nA′(I) ≤ mA′(I), Corollary 3.7 (i) together with (3.16) implies the estimate

mB(I) ≤ mA(I) + 3. (3.20)

It remains to show (3.20) in the case that μ ∈ σp(B′) ∩ I is not of positive and not of negative type, that is, 
there exists a neutral eigenvector x0. Then by Lemma 2.4 dim ker (B′ − μ) = 1 and the multiplicity of μ is 
larger than one. On the other hand it follows from [46] (see also [15, Theorem 3.1 (ii)]) that the multiplicity 
of μ is at most 3. We discuss the cases dim Lμ(B′) = 2 and dim Lμ(B′) = 3 separately.

If dim Lμ(B′) = 3 then there exists a Jordan chain {x0, x1, x2} of B′ at μ of length 3, and (2.3) implies 
M ′

A′(μ) = 0 and

M ′′
A′(μ) = 2[x1, x0] = 2[(B′ − μ)x2, x0] = 2[x2, (B′ − μ)x0] = 0. (3.21)

By Proposition 3.3 (iii) we have MB′ ∈ D1 and Proposition 3.3 (ii) yields

M ′′′
A′(μ) > 0. (3.22)

As in Step 4 in the proof of Theorem 3.5 the set I ∩ ρ(A′) consists of nA′(I) + 1 = mA′(I) + 1 open 
subintervals Ik. We have μ ∈ ρ(A′) (see (3.17)) and hence μ ∈ Ij for some j with 1 ≤ j ≤ mA′(I) + 1. Since 
all other eigenvalues of B′ in I ∩ ρ(A′) belong to σ++(B′) it follows from Lemma 2.4 (i) that the derivative 
of MA′ in such an eigenvalue is positive. This together with (3.22) shows that except for μ there is no other 
eigenvalue of B′ in Ij . Moreover in each of the subintervals Ik, 1 ≤ k ≤ mA′(I) + 1, k �= j, there is at most 
one eigenvalue of B′. Summing up we have

mB′(I) = nB′(I) + 2 and nB′(I) ≤ nA′(I) + 1.

Together with (3.16) and (3.18) the estimate (3.20) follows if the multiplicity of μ is 3.
It remains to consider the case dim Lμ(B′) = 2. Relation (2.3) implies M ′

A′(μ) = [x0, x0] = 0. If M ′′
A′(μ) =

0 then a similar reasoning as above implies (3.22) and the estimate (3.20) follows in the same way. If 
M ′′

A′(μ) �= 0 then we consider again the open subintervals Ik from above, 1 ≤ k ≤ mA′(I) + 1, and for some 
subinterval Ij with 1 ≤ j ≤ mA′(I) + 1 we have μ ∈ Ij . Again, by Lemma 2.4 (i), the derivative of MA′ is 
positive in all eigenvalues except in μ. Hence in each Ik, k �= j, there is at most one eigenvalue of B′. In Ij
the eigenvalue μ has multiplicity 2 and Lemma 2.5 yields that there is precisely one more eigenvalue of B′

(with multiplicity one) in Ij . This implies

mB′(I) = nB′(I) + 1 and nB′(I) ≤ nA′(I) + 2.

With (3.16) and (3.18) the upper estimate in (i) with κB = 1 follows.
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Step 5. Lower estimate in (ii) and (iii). If 0 ∈ I we apply the lower estimate in (i) to the intervals 
I+ = I ∩ R

+ and I− = I ∩ R
− separately. Taking into account the assumption 0 /∈ σp(A) we obtain the 

lower estimate in (ii). If 0 ∈ σp(A) we obtain

mA(I) − 2 = mA(I+) − 1 + mA(I−) − 1 + mA({0})

≤ mB(I+) + mB(I−) + mB({0}) −mB({0}) + mA({0})

≤ mB(I) + |mA({0}) −mB({0})|

and the lower estimate in (iii) follows from Theorem 3.8.
Step 6. Decomposition of K if 0 ∈ I. As in Step 1 the spectral subspace of A corresponding to I+ = I∩R+

(I− = I ∩ R
−) is a Hilbert space (anti-Hilbert space, respectively); cf. Proposition 3.1 (i). The subspace 

E+ (E−) spanned by the eigenvectors of S = A ∩ B in I+ (I−) is a subset of the spectral subspace of A
corresponding to I+ (I−, respectively), and the space E := E+[+̇]E− is a Krein space. Denote the restriction 
of S to E by SE . With respect to the decomposition K = E [+̇]E [⊥] we have

S =
(
SE 0
0 S′

)
, A =

(
SE 0
0 A′

)
and B =

(
SE 0
0 B′

)
,

with S′ symmetric, σp(S′) ∩ I ⊂ {0}, A′ nonnegative, and B′ selfadjoint in the Krein space (E [⊥], [·, ·]). 
Again A′, B′ and I satisfy Assumption (I) and, as in (3.16), we have

mA(I) = mSE (I) + mA′(I) and mB(I) = mSE (I) + mB′(I). (3.23)

If 0 /∈ σp(A) then 0 /∈ σp(A′) and we conclude from Proposition 2.7 (i) in the same way as in Step 1 that

σp(A′) ∩ σp(B′) ∩ I = ∅. (3.24)

Step 7. Upper estimate in (ii) if κB = 0. In the case 0 /∈ σp(B) the upper estimate in (ii) for κB = 0
follows immediately from the lower estimate in Step 5 by interchanging the roles of A and B.

Hence we consider the case 0 ∈ σp(B). Then we also have 0 ∈ σp(B′). As 0 /∈ σp(A′) Proposition 2.3 (iii) 
implies nA′(I) = mA′(I) also for an interval which contains 0. The set I ∩ ρ(A′) consists of nA′(I) + 1 =
mA′(I) + 1 open subintervals Ik. We have 0 ∈ ρ(A′) and hence 0 ∈ Ij for some j with 1 ≤ j ≤ mA′(I) + 1. 
As B and B′ are nonnegative operators all eigenvalues of B′ in I+ (I−) belong to σ++(B′) (σ−−(B′), 
respectively). It follows from Lemma 2.4 (i) and (3.24) that the derivative of MA′ in eigenvalues of B′ in 
I+ (I−) is positive (negative, respectively) and the multiplicity of these eigenvalues is one. We estimate 
the multiplicity of the eigenvalues of B′ in Ij . Since 0 ∈ σp(B′) ∩ ρ(A′) we have MA′(0) = 0 and by 
Lemma 3.4 (iii) the point 0 is a zero of MA′ of at most order two. If it is of order two, Lemma 3.4 (iii) and 
the above reasoning imply that 0 is the only zero in Ij . As B′ is a nonnegative operator, the (algebraic) 
multiplicity of the eigenvalue 0 is at most two. If 0 is a zero of MA′ of order one then the sign properties 
of M ′

A′ at the other zeros yield that there is at most one more eigenvalue of B′ in Ij . As a consequence 
of Lemma 2.4 (i) the multiplicities of these two eigenvalues in Ij are both one. Therefore in both cases we 
have

mB′(I) ≤ mA′(I) + 2.

Together with (3.23) the upper estimate in (ii) in the case κB = 0 is shown.
Step 8. Upper estimate in (ii) if κB = 1. We again make use of the open subintervals Ik from Step 7 

such that 0 ∈ Ij . We proceed in a similar way as in Step 5 of the proof of Theorem 3.5. By Proposition 3.3
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the function MA′ has at most one zero μ ∈ Ik0 in a subinterval Ik0 , k0 �= j, with M ′
A′(μ) ≤ 0 if μ > 0 or 

M ′
A′(μ) ≥ 0 if μ < 0. If MA′ has such an exceptional zero, then by Proposition 3.3 (iii) MB′ ∈ D1 and, 

hence, MA′(0) > 0 by Lemma 3.4 (ii). Thus MA′ has no zero in Ij and therefore B′ has no eigenvalue in 
Ij . As in Step 4 of the proof of Theorem 3.5 it follows that the total multiplicity of the eigenvalues of B′ in 
Ik0 is at most three. Moreover, in the other subintervals Ik, k �= k0, k �= j, B′ has at most one eigenvalue 
of multiplicity one. This yields the upper estimate in (ii).

It remains to discuss the case that MA′ has at most one zero in each of the subintervals Ik, k �= j, with 
positive (negative) derivative at these zeros if they are in Ik ⊂ R

+ (Ik ⊂ R
−, respectively). We distinguish 

in this situation the cases MA′(0) > 0, MA′(0) = 0, and MA′(0) < 0.
Observe that in the first case there is no zero of MA′ of third order in Ij (Proposition 3.3 (ii)) and there 

may appear either one zero of MA′ of second order or two zeros of order one in Ij; cf. Proposition 3.3. 
Hence we have either one eigenvalue of B′ of multiplicity two (cf. (3.21) in Step 4) or two eigenvalues of 
multiplicity one. If MA′(0) = 0 then MB′ ∈ D0 by Lemma 3.4 (ii) and 0 is a zero of at most second order 
by Lemma 3.4 (iii). If 0 is a zero of second order then M ′′

A′(0) > 0, there are no other zeros of MA′ in Ij
(Proposition 3.3 (i)), and therefore 0 is an eigenvalue of B′ of multiplicity two (cf. (3.21) in Step 4). If 0
is a zero of first order there is at most one other zero in Ij of multiplicity one (Proposition 3.3 (i)); thus 
the total multiplicity of the eigenvalues of B′ in Ij is at most two. If MA′(0) < 0 then again MB′ ∈ D0 by 
Lemma 3.4 (ii) and it follows from Proposition 3.3 (i) that MA′ has at most two zeros of first order in Ij. 
Again, the total multiplicity of the eigenvalues of B′ in Ij is at most two and the upper estimate in (ii) 
follows.

Step 9. Upper estimate in (iii) if κB = 0. The upper estimate in (iii) for κB = 0 follows from Theorem 3.8
and from the upper estimate in (i) applied to the intervals I+ = I ∩ R

+ and I− = I ∩ R
− separately.

Step 10. Upper estimate in (iii) if κB = 1. From Proposition 2.7 (i) we conclude

σp(A′) ∩ σp(B′) ∩ (I− ∪ I+) = ∅

and Proposition 2.3 (iii) implies

nA′(I− ∪ I+) = mA′(I− ∪ I+).

By Proposition 3.3 (ii) the function MA′ has at most one zero μ in I+ (I−) with M ′
A′(μ) ≤ 0 (M ′

A′(μ) ≥ 0, 
respectively). For simplicity, we assume that M ′

A′ has such an exceptional zero μ in I−. As in Step 4 of the 
proof of Theorem 3.5 it follows that the total multiplicity of the eigenvalues of B′ in I− exceeds the total 
multiplicity of the eigenvalues of A′ in I− by at most 3, whereas in I+ it exceeds by at most 1, hence

mB′(I− ∪ I+) ≤ mA′(I− ∪ I+) + 4.

Together with Theorem 3.8 we obtain

mB′(I) = mB′(I− ∪ I+) + mB′({0}) ≤ mA′(I− ∪ I+) + 4 + mA′({0}) + 2 = mA′(I) + 6

and, together with (3.23) the upper estimate in (iii) is shown.
Step 11. Proof of mA(I) = ∞ if and only if mB(I) = ∞. If mA(I) = ∞ then either nA(I) = ∞ in which 

case the assertion follows from Theorem 3.5, or nA(I) < ∞ in which case there exists at least one eigenvalue 
of A with infinite multiplicity and the assertion follows from Proposition 2.3 (i). Conversely, if mB(I) = ∞
then the same reasoning implies mA(I) = ∞.
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3.5. Proof of Theorem 3.8

The proof of Theorem 3.8 is a consequence of four lemmas which are also of independent interest. From 
now on let A and B be as in the assumptions of Theorem 3.8. As A is nonnegative we have

[Ax, x] = 0 =⇒ x ∈ kerA (3.25)

for every x ∈ domA. Indeed, the application of the Cauchy–Bunyakowski inequality to the semi-definite 
inner product [A·, ·] gives |[Ax, y]|2 ≤ [Ax, x][Ay, y] for all x, y ∈ domA, and (3.25) follows. Moreover, from 
Proposition 2.1 we find that

(B − λ0)−1 − (A− λ0)−1 = 1
MA(λ0)

[·, ϕA]γA(λ0).

Observe that (B − λ0)−1 and (A − λ0)−1 coincide on {ϕA}[⊥] and define

M := (A− λ0)−1{ϕA}[⊥] = (B − λ0)−1{ϕA}[⊥].

Hence, M ⊂ domA ∩domB. For y ∈ M there exists x ∈ {ϕA}[⊥] such that y = (A −λ0)−1x = (B−λ0)−1x

and hence

Ay = x + λ0(A− λ0)−1x = x + λ0(B − λ0)−1x = By.

Thus, A and B coincide on M and their domains decompose as

domA = (A− λ0)−1K = (A− λ0)−1({ϕA}[⊥] ⊕ span {JϕA}
)

= M+̇span {fA},

domB = (B − λ0)−1K = (B − λ0)−1({ϕA}[⊥] ⊕ span {JϕA}
)

= M+̇span {fB},

where J is a fundamental symmetry in the Krein space K and fA := (A − λ0)−1JϕA �= 0 and fB :=
(B − λ0)−1JϕA �= 0. It follows, in particular, that M has codimension 1 in domA and domB. Hence for 
x, y ∈ domA (or x, y ∈ domB) with y /∈ M there exists α ∈ C such that

x− αy ∈ M.

This observation will be used frequently in the following considerations.

Lemma 3.11. Let A and B be as in Theorem 3.8. Then the following assertions hold.

(i) A has Jordan chains at 0 of length at most 2.
(ii) B has Jordan chains at 0 of length at most 4.
(iii) If B has a Jordan chain at 0 of length 3 or 4 then kerB ⊆ kerA.

Proof. Assertion (i) is well known, see [46, Proposition II.2.1]. In order to show (ii) assume that B has a 
Jordan chain {x0, . . . , x4} at 0 of length 5. Then

[x2, x1] = [B2x4, x1] = [x4, B
2x1] = [x4, 0] = 0

and, analogously, [x0, x0] = [x0, x1] = [x0, x2] = [x1, x1] = 0. If x2 ∈ M then

0 = [x1, x2] = [Bx2, x2] = [Ax2, x2],
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which, by (3.25), implies that x2 ∈ kerA ∩M ⊆ kerB; a contradiction to Bx2 = x1 �= 0. Hence, x2 /∈ M

and there exists α ∈ C such that x1 − αx2 ∈ M and

0 = [x0 − αx1, x1 − αx2] = [B(x1 − αx2), x1 − αx2] = [A(x1 − αx2), x1 − αx2].

Again (3.25) implies x1 − αx2 ∈ kerA ∩M ⊆ kerB; a contradiction to B(x1 − αx2) = x0 − αx1 �= 0 and 
(ii) follows.

It remains to check (iii). Assume that {x0, x1, x2} is a Jordan chain of B at 0 of length 3 (the proof for 
a Jordan chain of length 4 is the same), let y ∈ kerB and assume y /∈ kerA. Then y /∈ M and there exists 
α ∈ C such that x1 − αy ∈ M and

[A(x1 − αy), x1 − αy] = [B(x1 − αy), x1 − αy] = [x0, x1 − αy] = −[Bx1, αy] = 0.

Here we have used that [x0, x1] = [B2x2, x1] = [x2, B2x1] = 0. From (3.25) we conclude x1−αy ∈ kerA ∩M ⊆
kerB, but B(x1 − αy) = x0 �= 0; a contradiction and (iii) follows. �

In the following lemma we collect some results on the dimensions of the kernel of B (and its powers) 
compared with the corresponding dimensions of the kernel of A. The first three items of Lemma 3.12 below 
follow directly from [10]. From Lemma 3.11 we conclude dim

(
kerA3/kerA2) = 0 and also the last statement 

in Lemma 3.12 below follows from [10].

Lemma 3.12. Let A and B be as in Theorem 3.8. Then the following assertions hold.

(i) |dim kerA − dim kerB| ≤ 1;
(ii) |dim kerA2 − dim kerB2| ≤ 2;
(iii) |dim

(
kerA2/kerA

)
− dim

(
kerB2/kerB

)
| ≤ 1;

(iv) dim
(
kerB3/kerB2) ≤ 1, that is, B has no two (linearly independent) Jordan chains at 0 of length 3.

By Lemma 3.11 (i) and (ii) we see L0(B) = kerB4, L0(A) = kerA2, and with Lemma 3.12 (ii) we obtain

mA({0}) − 2 = dim kerA2 − 2 ≤ dim kerB2 ≤ dim kerB4 = mB({0}). (3.26)

For two special cases we prove the opposite bound in the next lemma.

Lemma 3.13. Let A and B be as in Theorem 3.8. Then the following assertions hold.

(i) If 0 ∈ ρ(A) then

|mA({0}) −mB({0})| = mB({0}) ≤ 2.

(ii) If L0(A) ⊆ L0(B) and A|L0(A) = B|L0(A) then

|mA({0}) −mB({0})| ≤ 2.

Proof. By (3.26) we only need to prove that mB({0}) ≤ mA({0}) + 2.
(i) If 0 ∈ ρ(A) then B has Jordan chains at 0 of length at most 2. Indeed, assume that B has a Jordan 

chain {x0, x1, x2} at 0 of length 3. Then [x0, x0] = [Bx1, x0] = 0 and [x1, x0] = [Bx2, x0] = 0. If x0 ∈ M

then 0 = Bx0 = Ax0; a contradiction to 0 ∈ ρ(A). Consequently, x0 /∈ M . Then there exists α ∈ C with 
0 �= x1 − αx0 ∈ M and

0 = [x0, x1 − αx0] = [B(x1 − αx0), x1 − αx0] = [A(x1 − αx0), x1 − αx0].
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Relation (3.25) implies that x1−αx0 ∈ kerA; a contradiction to 0 ∈ ρ(A). Therefore we have L0(B) = kerB2

and the claim follows by Lemma 3.12 (ii).
(ii) Since 0 is an isolated point in σ(A) we have K = L0(A)[+̇]L0(A)[⊥], where both (L0(A), [·, ·]) and 

(L0(A)[⊥], [·, ·]) are Krein spaces; cf. [6, Theorem II.2.20]. Since A and B coincide on L0(A) this subspace 
is invariant under A and B, and according to the chosen decomposition of K we obtain

A =
(
A0 0
0 A1

)
, B =

(
A0 0
0 B1

)
,

where A1 is nonnegative, 0 ∈ ρ(A1), B1 is selfadjoint and (B1 − λ0)−1 − (A1 − λ0)−1 is a selfadjoint rank 
one operator in the Krein space (L0(A)[⊥], [·, ·]). Applying (i) to B1 and A1, the claim follows. �
Lemma 3.14. Let A and B be as in Theorem 3.8. If {x0, x1, x2} is a Jordan chain of B at 0 of length 3 and 
B has no Jordan chain at 0 of length 4 then there exists a basis b of L0(B) containing {x0, x1, x2} with

b \ {x1, x2} ⊆ L0(A).

If B has a Jordan chain {x0, x1, x2, x3} at 0 of length 4 then there exists a basis b of L0(B) containing 
{x0, x1, x2, x3} with

b \ {x1, x2, x3} ⊆ L0(A).

Proof. We consider the case that there is a Jordan chain {x0, x1, x2} of B at 0 of length 3 and none of 
length 4. In this case we have [x0, x0] = [x1, x0] = 0. We show x0 ∈ M and x1 /∈ M . If x0 /∈ M then there 
exists α ∈ C such that x1 − αx0 ∈ M . Hence,

0 = [x0, x1 − αx0] = [B(x1 − αx0), x1 − αx0] = [A(x1 − αx0), x1 − αx0],

and (3.25) implies x1 − αx0 ∈ kerA ∩ M ⊆ kerB; a contradiction to Bx1 = x0 �= 0. Thus x0 ∈ M . If 
x1 ∈ M then [Ax1, x1] = [Bx1, x1] = [x0, x1] = 0. Hence by (3.25) x1 ∈ kerA ∩M ⊆ kerB; a contradiction. 
Consequently, x1 /∈ M .

As mA({0}) < ∞ by assumption it follows from Lemma 3.12 and Lemma 3.11 (ii) that the dimen-
sion mB({0}) of the root subspace L0(B) is finite as well. If L0(B) = span{x0, x1, x2} then in view of 
Lemma 3.11 (iii) the assertion of Lemma 3.14 follows. Let {x0, x1, x2, u3, . . . , un} be a basis of L0(B) for 
some n ≥ 3. For 3 ≤ k ≤ n we define zk in the following way: If uk ∈ kerB then by Lemma 3.11 (iii) also 
uk ∈ kerA and we set zk := uk. If uk /∈ kerB then by Lemma 3.12 (iv) we obtain uk ∈ kerB2 and we set 
yk := Buk �= 0. As x1 /∈ M there exist αk ∈ C such that zk := uk − αkx1 ∈ M and we have

Azk = Bzk = yk − αkx0 ∈ kerB ⊆ kerA and zk ∈ kerA2 = L0(A).

The elements x0, x1, x2, z3, . . . , zn are linearly independent. Moreover, x0 ∈ M ∩ kerB and hence x0 ∈
kerA ⊆ L0(A). Thus b := {x0, x1, x2, z3, . . . , zn} is a basis of L0(B) with the desired properties.

The case of a Jordan chain at 0 of length 4 is proved analogously. �
Proof of Theorem 3.8. By Lemma 3.12 and Lemma 3.11 (ii) the root subspace L0(B) is finite dimensional. 
In regard of (3.26) it remains to prove

mB({0}) ≤ mA({0}) + 2. (3.27)

By Lemma 3.12 (iv), B cannot have two linearly independent Jordan chains at 0 of length 3, so that B has 
at most a single Jordan chain at 0 of length 3 or 4. Hence, if dim kerB2 ≤ dim kerA2 the claim follows. 
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Fig. 1. Schematic plot of the function M1(λ) = − (λ−2)(λ−3)(λ−4)
λ(λ−1)(λ−5) .

Therefore, assume that dim kerB2 > dim kerA2. If there is no Jordan chain of B at 0 of length 3 the 
estimate follows from Lemma 3.12 (ii). Now assume, that B has a Jordan chain {x0, x1, x2} at 0 of length 
3 and none of length 4 (the case of a Jordan chain at 0 of length 4 is analogous). By Lemma 3.11 (iii) we 
have kerB ⊆ kerA and because of Lemma 3.12 (i) there are only two possible cases:

(i) dim kerB = dim kerA: Hence, kerA = kerB. Then Lemma 3.12 (iii) and Lemma 3.11 imply that 
dim L0(A) = dim kerA2 = dim kerB2 − 1. Let b be the basis of L0(B) constructed in the proof of 
Lemma 3.14. Then b \ {x2} is a basis of kerB2. Moreover, b \ {x1, x2} is contained in L0(A). But 
dim L0(A) = dim kerB2 − 1 is the cardinality of b \ {x1, x2}. Thus L0(A) = span {b \ {x1, x2}}. 
Recall that b = {x0, x1, x2, z3, . . . , zn} and zk ∈ M , k = 3, . . . , n; cf. the proof of Lemma 3.14. Then 
A|L0(A) = B|L0(A) and (3.27) is a consequence of Lemma 3.13 (ii).

(ii) dim kerB = dim kerA − 1: Since kerB ⊆ kerA ⊆ kerA2 we see

dim
(
kerB2/kerB

)
> dim

(
kerA2/kerB

)
= dim

(
kerA2/kerA

)
+ 1

in contradiction to Lemma 3.12 (iii).

It remains to show the sharpness of (3.27). For this consider the space C2 with a fundamental symmetry J
and operators A and B defined via

J := A :=
(

0 1
1 0

)
, B :=

(
0 1
0 0

)
.

It is easily seen that A and B satisfy Assumption (I), mA({0}) = 0, and mB({0}) = 2. �
3.6. Three examples

Define the function M1 by

M1(λ) = − (λ− 2)(λ− 3)(λ− 4)
λ(λ− 1)(λ− 5) ;

cf. Fig. 1. By Definition 3.2 (see also [14, Theorem 2]) M1 belongs to the class D0 and

M1(λ) = 24
5λ − 3

2(λ− 1) − 3
10(λ− 5) − 1.

From Proposition 3.3 (iii) we conclude that the function λ �→ − 1
M1(λ) belongs to D1. The Pontryagin space 

and the selfadjoint matrices A and B from Step 6 in the proof of Theorem 3.5 can easily be computed with
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Fig. 2. Schematic plot of the function M2(λ) = − (λ+1)(λ−1)(λ−3)
(λ+2)(λ−2)(λ−4) .

standard methods; cf. [30]. Here we equip C3 with the indefinite inner product

[x, y] := −x1y1 + x2y2 + x3y3, x = (x1, x2, x3)	, y = (y1, y2, y3)	, (3.28)

and obtain the matrices

A =
(0 0 0

0 1 0
0 0 5

)
and B =

⎛
⎜⎝

24
5 − 6√

5 −6
5

6√
5 −1

2 − 3√
20

6
5 − 3√

20
47
10

⎞
⎟⎠ ,

which are selfadjoint in the Pontryagin space (C3, [·, ·]) and differ by a rank one matrix. Clearly σ(A) =
{0, 1, 5} coincides with the poles of M1 and the zeros of M1 coincide with σ(B) = {2, 3, 4}. We also mention 
that A is nonnegative and it can be checked that B has one negative square. Obviously the matrix B has 
three eigenvalues in the interval (1, 5) whereas A has no eigenvalues in (1, 5); cf. the upper estimate in 
Theorem 3.5 (i) with κB = 1. Moreover, in (−1, 2) are no eigenvalues of B whereas A has two eigenvalues 
there; cf. the lower estimate in Theorem 3.5 (ii). Similarly, any sufficiently small interval containing a positive 
pole of M1 is an example for the lower estimate in Theorem 3.5 (i).

As a second example consider the function

M2(λ) = − (λ + 1)(λ− 1)(λ− 3)
(λ + 2)(λ− 2)(λ− 4) ,

which belongs to D0; cf. Fig. 2. Here the function λ �→ − 1
M2(λ) belongs to D0 and we have

M2(λ) = 5
8(λ + 2) − 3

8(λ− 2) − 5
4(λ− 4) − 1.

We equip C3 with the indefinite inner product (3.28) and obtain the selfadjoint matrices

A =
(−2 0 0

0 2 0
0 0 4

)
and B =

⎛
⎜⎜⎝
−11

8 −
√

15
8 − 5

4
√

2√
15
8

13
8 −1

4

√
15
2

5
4
√

2 −1
4

√
15
2

11
4

⎞
⎟⎟⎠

as minimal realizations of the functions M2 and −M−1
2 ; cf. Step 6 in the proof of Theorem 3.5. It can be 

checked that in fact A −B is a rank one matrix, κB = 0, and that σ(A) = {−2, 2, 4} and σ(B) = {−1, 1, 3}
are the poles and zeros of M2, respectively. The matrix B has two eigenvalues in the interval (−2, 2) whereas 
A has no eigenvalue in (−2, 2), which is the upper estimate in Theorem 3.5 (ii) with κB = 0. Similarly, any 
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Fig. 3. Schematic plot of the function M3(λ) = − (λ+1)(λ−1)(λ−2)(λ−3)
(λ+2)λ2(λ−4) .

sufficiently small interval containing a zero of M2 is an example for the upper estimate in Theorem 3.5 (i) 
with κB = 0.

Finally, in order to provide an example for the upper estimate in Theorem 3.5 (ii) with κB = 1, consider 
the function

M3(λ) = − (λ + 1)(λ− 1)(λ− 2)(λ− 3)
(λ + 2)λ2(λ− 4) ,

which is in D0 and λ �→ − 1
M3(λ) is in D1 (see Fig. 3); cf. Proposition 3.3 (iii). Here we have

M3(λ) = 5
2(λ + 2) − 3

4λ2 + 13
16λ − 5

16(λ− 4) − 1

and if C4 is equipped with the indefinite inner product

[x, y] := x1y1 + x2y2 − x3y3 − x4y4, x = (x1, x2, x3, x4)	, y = (y1, y2, y3, y4)	,

then the selfadjoint matrices

A =

⎛
⎜⎜⎜⎝

4 0 0 0
0 12

13
12
13 0

0 −12
13 −12

13 0
0 0 0 −2

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎝

59
16 0 −

√
65

16
5

4
√

2
0 12

13
12
13 0

√
65

16 −12
13 − 23

208 −1
4

√
65
2

− 5
4
√

2 0 −1
4

√
65
2

1
2

⎞
⎟⎟⎟⎟⎠

can be computed as minimal realizations of M3 and −M−1
3 , respectively. Then A −B is a rank one matrix, 

κB = 1 and σ(A) = {−2, 0, 4} and σ(B) = {−1, 1, 2, 3} are the poles and zeros of M3, respectively. In the 
interval (−2, 4) the matrix B has 4 eigenvalues whereas A has one eigenvalue there; cf. the upper estimate 
in Theorem 3.5 (ii) with κB = 1.

4. Singular indefinite Sturm–Liouville problems

In this section the general eigenvalue estimates are illustrated in a typical application from the theory of 
singular Sturm–Liouville problems with indefinite weight functions. The main result Theorem 4.1 extends 
the estimate in [12, Theorem 4.1]. In contrast to [12] we go beyond the so-called left-definite case, which 
was studied intensively from different points of view; cf. [16–18,20,38,40,41,56].

Let r, p−1, q ∈ L1
loc(R) be real valued, p > 0 and r �= 0 a.e., and consider

� = 1
(
− d

p
d + q

)
and τ = 1

(
− d

p
d + q

)
.
|r| dx dx r dx dx



892 J. Behrndt et al. / J. Math. Anal. Appl. 439 (2016) 864–895
We assume that � is in the limit point case at ±∞ and that the weight function has one sign change at 
some point c ∈ R such that r+ = r � (c, ∞) > 0 and r− = r � (−∞, c) < 0 a.e. It is well known that � gives 
rise to a selfadjoint operator

Tf = �(f) = 1
|r|

(
(−pf ′)′ + qf

)
f ∈ domT, (4.1)

in the weighted L2-Hilbert space L2(R, |r|), where domT is the usual maximal domain. All eigenvalues of 
T are simple due to the limit point condition, i.e. nT (I) = mT (I) (cf. Section 3), where I ⊂ R is an interval 
with σess(T ) ∩ I = ∅. The indefinite Sturm–Liouville operator B := sgn (r)T is given by

Bf = τ(f) = 1
r

(
(−pf ′)′ + qf

)
, f ∈ domB = domT. (4.2)

Note that B is selfadjoint in the Krein space (L2(R, |r|), [·, ·]), where [f, g] = (sgn (r)f, g), f, g ∈ L2(R, |r|), 
and (·, ·) is the usual inner product in the Hilbert space L2(R, |r|).

Theorem 4.1. Assume that T in (4.1) is nonnegative in the Hilbert space L2(R, |r|) with η = min σess(T ) > 0. 
Then the indefinite Sturm–Liouville operator B in (4.2) is nonnegative in the Krein space (L2(R, |r|), [·, ·]), 
(−η, η) ∩ σess(B) = ∅ and mB((−η, η)) is finite if and only if nT ([0, η)) is finite, in which case

nT ([0, η)) − 3 ≤ mB((−η, η)) ≤ nT ([0, η)) + 3. (4.3)

Proof. It is easy to see that B is nonnegative in (L2(R, |r|), [·, ·]) and the assertion (−η, η) ∩ σess(B) = ∅
follows from [12, Proposition 2.3]. We consider the selfadjoint realizations T+ and T− of � restricted to (c, ∞)
and (−∞, c), respectively, with Dirichlet boundary conditions at c in the Hilbert spaces L2((c, ∞), |r+|) and 
L2((−∞, c), |r−|), respectively. Then the orthogonal sum T+ ⊕ T− is a selfadjoint operator in the Hilbert 
space L2(R, |r|) and

dim
(
ran (T − λ)−1 − ((T+ ⊕ T−) − λ)−1) = 1, λ ∈ C \ R.

As � is in the limit point case at ±∞, all eigenvalues of T+ and of T− are simple and, hence, the multiplicity 
of each eigenvalue of T+⊕T− is at most two. Besides T+⊕T− also the selfadjoint operator A := T+⊕ (−T−)
will be used in the following. Note that A also is selfadjoint in the Krein space (L2(R, |r|), [·, ·]) with

dim
(
ran (B − λ)−1 − (A− λ)−1) = 1, λ ∈ C \ R,

and [Af, f ] = ((T+ ⊕ T−)f, f) ≥ 0 holds for all f ∈ domA = domT+ ⊕ domT−. Hence A is nonnegative in 
(L2(R, |r|), [·, ·]).

It is not difficult to see that the following relations hold for the spectra of the operators T , T±, A, and B; 
cf. [12, Lemma 2.2 and Proposition 2.3].

(1) If 0 ∈ σp(T ) then either 0 ∈ ρ(T+) ∩ ρ(T−) or 0 ∈ σp(T+) ∩ σp(T−);
(2) 0 ≤ min σ(T ) ≤ min σ(T±) and σess(T ) = σess(T+ ⊕ T−) = σess(T+) ∪ σess(T−);
(3) nT ([0, η)) is finite if and only if mT+⊕T−([0, η)) is finite, in which case

nT ([0, η)) − 1 ≤ mT+⊕T−([0, η)) ≤ nT ([0, η)) + 1,

nT ((0, η)) − 1 ≤ mT+⊕T−((0, η)) ≤ nT ((0, η)) + 1; (4.4)

(4) mT+⊕T−([0, η)) = mA((−η, η)) and mT+⊕T−((0, η)) = mA((−η, 0)) + mA((0, η)).
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Observe that A, B and I = (−η, η) satisfy Assumption (I) in Section 2. Then (3) and (4) together with 
Theorem 3.9 imply that mB((−η, η)) is finite if and only if nT ([0, η)) is finite. In order to show the estimate 
(4.3) assume first that 0 /∈ σp(T ). Then (2) implies that 0 /∈ σp(T+) ∪σp(T−) and hence 0 /∈ σp(A). According 
to Theorem 3.9 (ii) with κB = 0 we have

mA((−η, η)) − 2 ≤ mB((−η, η)) ≤ mA((−η, η)) + 2

and hence the first estimate in (3) together with (4) implies (4.3). If 0 ∈ σp(T ) then either 0 ∈ ρ(T+) ∩ρ(T−)
or 0 ∈ σp(T+) ∩ σp(T−) by (1). In the first case we have 0 /∈ σp(A) and again Theorem 3.9 (ii) with κB = 0
and (3), (4) yields (4.3). In the second case 0 is an eigenvalue of (geometric) multiplicity 2 of T+ ⊕ T−. As 
all eigenvalues of T are simple we have mT ({0}) = 1. Moreover, every eigenvector of T at 0 is an eigenvector 
of B (and vice versa) and we have

1 ≤ mB({0}) ≤ 2, (4.5)

where the upper estimate in (4.5) follows from the fact that B is a nonnegative operator in the Krein space 
(L2(R, |r|), [·, ·]), see [46, Proposition II.2.1]. We obtain by (4.4), (4), and Theorem 3.9 (i) with κB = 0
(applied to (−η, 0) and (0, η))

nT ([0, η)) − 3 = nT ((0, η)) − 2

≤ mT+⊕T−((0, η)) − 1

= mA((−η, 0)) + mA((0, η)) − 1

≤ mB((−η, 0)) + mB((0, η)) + 1

≤ mB((−η, 0)) + mB((0, η)) + mB({0}) = mB((−η, η)),

where we have used in the last estimate (4.5). Similarly, with the upper estimate in (4.5), Theorem 3.9 (i), 
(4), mT+⊕T−({0}) = 2, and (4.4) we see

mB((−η, η)) = mB((−η, 0)) + mB((0, η)) + mB({0})

≤ mB((−η, 0)) + mB((0, η)) + 2

≤ mA((−η, 0)) + 1 + mA((0, η)) + 1 + 2

= mT+⊕T−((0, η)) + 4

= mT+⊕T−([0, η)) + 2 ≤ nT ([0, η)) + 3.

This completes the proof of Theorem 4.1. �
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