Eigenvalues of Schrödinger operators and Dirichlet-to-Neumann maps

Jussi Behrndt ${ }^{1}$, Christian Kühn ${ }^{1, *}$, and Jonathan Rohleder ${ }^{1}$
${ }^{1}$ Institut für Numerische Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

Eigenvalues and eigenspaces of selfadjoint Schrödinger operators on \mathbb{R}^{n} are expressed in terms of Dirichlet-to-Neumann maps corresponding to Schrödinger operators on the upper and lower half space.
(c) 2013 Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 Introduction

It is known that the eigenvalues of a Schrödinger operator A_{D} with Dirichlet boundary condition on a bounded domain $\Omega \subset \mathbb{R}^{n}$ with a bounded, real-valued potential V coincide with the poles of the meromorphic operator function $\mu \mapsto M^{\Omega}(\mu)$, where $M^{\Omega}(\mu)$ is the Dirichlet-to-Neumann map of $-\Delta+V-\mu$, see, e.g., [1,2]. Moreover, for each eigenvalue λ the map

$$
\tau: \operatorname{ker}\left(A_{D}-\lambda\right) \rightarrow \operatorname{ran} \operatorname{Res}_{\lambda} M^{\Omega},\left.\quad u \mapsto \partial_{\nu} u\right|_{\partial \Omega}
$$

(where $\left.\partial_{\nu} u\right|_{\partial \Omega}$ denotes the trace of the normal derivative of u at the boundary $\partial \Omega$) is an isomorphism between the eigenspace and the range of the residue of M^{Ω} at λ; cf. [2]. Such a result is also desirable for a selfadjoint Schrödinger operator $A=-\Delta+V$ in $L^{2}\left(\mathbb{R}^{n}\right), n \geq 2$. In order to define an operator function which plays the role of M^{Ω} we introduce the artificial "boundary" $\Sigma:=\mathbb{R}^{n-1} \times\{0\}$, which separates \mathbb{R}^{n} into $\mathbb{R}_{+}^{n}:=\mathbb{R}^{n-1} \times(0, \infty)$ and $\mathbb{R}_{-}^{n}:=\mathbb{R}^{n-1} \times(-\infty, 0)$, and consider the Dirichlet-to-Neumann maps $M^{ \pm}(\mu)$ in $L^{2}(\Sigma)$ corresponding to the Schrödinger operators $-\Delta+V-\mu$ on $\mathbb{R}_{ \pm}^{n}$, respectively. A natural candidate for the description of the eigenvalues of A is $M(\mu):=\left(M^{+}(\mu)+M^{-}(\mu)\right)^{-1}$; cf. [3] for a similar function defined in the case that Σ is a sphere. In Theorem 2.1 of this note we show that each pole of M is an eigenvalue of A but in general the analog of the map τ is not bijective. We indicate in Theorem 2.2 that this drawback can be avoided by considering a certain 2×2 block operator matrix function with entries formed by $M^{ \pm}$and M.

2 Characterization of eigenvalues and eigenspaces with Dirichlet-to-Neumann maps

Let $n \geq 2$ and denote by $H^{s}\left(\mathbb{R}^{n}\right)$ and $H^{s}(\Sigma)$ the Sobolev spaces of order $s>0$ on \mathbb{R}^{n} and Σ, respectively. Moreover, let $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$ be a real-valued potential. We consider the selfadjoint Schrödinger operator

$$
A u=-\Delta u+V u, \quad \operatorname{dom} A=H^{2}\left(\mathbb{R}^{n}\right)
$$

in $L^{2}\left(\mathbb{R}^{n}\right)$. For μ in the resolvent set $\rho(A)$ of A we define

$$
\begin{aligned}
\mathcal{N}_{\mu}^{ \pm} & :=\left\{u_{\mu}^{ \pm} \in H^{2}\left(\mathbb{R}_{ \pm}^{n}\right):(-\Delta+V-\mu) u_{\mu}^{ \pm}=0\right\} \\
\mathcal{N}_{\mu} & :=\left\{u_{\mu}^{+} \oplus u_{\mu}^{-} \in \mathcal{N}_{\mu}^{+} \oplus \mathcal{N}_{\mu}^{-}:\left.u_{\mu}^{+}\right|_{\Sigma}=\left.u_{\mu}^{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

where $\left.v\right|_{\Sigma}$ denotes the trace of a Sobolev function v at Σ. Let $\partial_{n} v:=\frac{\partial v}{\partial x_{n}}$. One can show, that for every $g \in H^{\frac{1}{2}}(\Sigma)$ there exists a unique element $u_{\mu} \in \mathcal{N}_{\mu}$ with $\left.\partial_{n} u_{\mu}^{-}\right|_{\Sigma}-\left.\partial_{n} u_{\mu}^{+}\right|_{\Sigma}=g$. Hence the operator-valued function M defined via

$$
\rho(A) \ni \mu \mapsto M(\mu), \quad M(\mu)\left(\left.\partial_{n} u_{\mu}^{-}\right|_{\Sigma}-\left.\partial_{n} u_{\mu}^{+}\right|_{\Sigma}\right):=\left.u_{\mu}\right|_{\Sigma}
$$

is well-defined. $M(\mu)$ is a bounded operator in $L^{2}(\Sigma)$ with domain $H^{\frac{1}{2}}(\Sigma)$ and range in $H^{\frac{3}{2}}(\Sigma)$ for every $\mu \in \rho(A)$. Moreover, for every $g \in H^{\frac{1}{2}}(\Sigma)$ the function $\mu \mapsto M(\mu) g$ is holomorphic and has poles of at most order one; cf. [2]. Note that for $\mu \in \mathbb{C} \backslash \mathbb{R}$ the operator $M(\mu)$ coincides with $\left(M^{+}(\mu)+M^{-}(\mu)\right)^{-1}$, where $M^{ \pm}(\mu)$ denotes the Dirichlet-to-Neumann map with respect to $-\Delta+V-\mu$ on $\mathbb{R}_{ \pm}^{n}$, i.e. $\left.M^{ \pm}(\mu) u_{\mu}^{ \pm}\right|_{\Sigma}=\left.\mp \partial_{n} u_{\mu}^{ \pm}\right|_{\Sigma}$ for $u_{\mu}^{ \pm} \in \mathcal{N}_{\mu}^{ \pm}$, respectively.

[^0]Theorem 2.1 If $\lambda \in \mathbb{R}$ is a pole of M then λ is an eigenvalue of A, but in general $\operatorname{dim} \operatorname{ran} \operatorname{Res}_{\lambda} M \lesseqgtr \operatorname{dim} \operatorname{ker}(A-\lambda)$.
Proof. Let $\lambda \in \mathbb{R}$ be a pole of M. We show $\operatorname{dim} \operatorname{ker}(A-\lambda) \geq \operatorname{dim} \operatorname{ran}_{\operatorname{Res}}^{\lambda}$ M, from which, in particular, the first assertion follows. Let $\mu, \nu, z \in \mathbb{C} \backslash \mathbb{R}$ be distinct and let $g \in H^{\frac{1}{2}}(\Sigma)$. For $j, k \in\{\mu, \nu, z\}$ denote by u_{j} the unique element in \mathcal{N}_{j} with $\left.\partial_{n} u_{j}^{-}\right|_{\Sigma}-\left.\partial_{n} u_{j}^{+}\right|_{\Sigma}=g$ and choose u_{k} analogously. Due to $u_{j}-u_{k} \in \operatorname{dom} A$ and

$$
(A-j)\left(u_{j}-u_{k}\right)=(-\Delta+V-j)\left(u_{j}^{+}-u_{k}^{+}\right) \oplus(-\Delta+V-j)\left(u_{j}^{-}-u_{k}^{-}\right)=(j-k) u_{k}
$$

we obtain $(A-j)^{-1} u_{k}=\frac{u_{j}-u_{k}}{j-k}$ if $j \neq k$. Hence we get

$$
\begin{aligned}
\left.\left((A-\mu)^{-1}(A-z)^{-1} u_{\nu}\right)\right|_{\Sigma} & =\left.\frac{1}{z-\nu}\left((A-\mu)^{-1}\left(u_{z}-u_{\nu}\right)\right)\right|_{\Sigma}=\left.\frac{1}{z-\nu}\left[\frac{u_{\mu}-u_{z}}{\mu-z}-\frac{u_{\mu}-u_{\nu}}{\mu-\nu}\right]\right|_{\Sigma} \\
& =\frac{1}{z-\nu}\left[\frac{M(\mu) g-M(z) g}{\mu-z}-\frac{M(\mu) g-M(\nu) g}{\mu-\nu}\right]
\end{aligned}
$$

By the spectral theorem one gets $i P u_{\nu}=\lim _{\eta \backslash 0} \eta(A-(\lambda+i \eta))^{-1} u_{\nu}$, where P denotes the orthogonal projection in $L^{2}\left(\mathbb{R}^{n}\right)$ onto $\operatorname{ker}(A-\lambda)$. As the map $\left.v \mapsto\left[(A-\mu)^{-1} v\right]\right|_{\Sigma}$ is continuous from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}(\Sigma)$ we get for $z=\lambda+i \eta$

$$
\begin{aligned}
\left.\left(P u_{\nu}\right)\right|_{\Sigma} & =\left.\left[(A-\mu)^{-1}(\lambda-\mu) P u_{\nu}\right]\right|_{\Sigma}=\left.(\lambda-\mu) \lim _{\eta \searrow 0} \frac{\eta}{i}\left[(A-\mu)^{-1}(A-(\lambda+i \eta))^{-1} u_{\nu}\right]\right|_{\Sigma} \\
& =\lim _{\eta \searrow 0} \frac{(\lambda-\mu) \eta}{(z-\nu) i}\left[\frac{M(\mu) g-M(z) g}{\mu-z}-\frac{M(\mu) g-M(\nu) g}{\mu-\nu}\right]=\lim _{\eta \searrow 0} \frac{i \eta}{\lambda-\nu} M(z) g=\frac{\operatorname{Res}_{\lambda} M g}{\lambda-\nu} .
\end{aligned}
$$

We have shown $\left\{\left.u\right|_{\Sigma}: u \in P \mathcal{N}_{\nu}\right\}=\operatorname{ran} \operatorname{Res}_{\lambda} M$, hence $\operatorname{dim} \operatorname{ker}(A-\lambda) \geq \operatorname{dim} \operatorname{ran} \operatorname{Res}_{\lambda} M$. In general equality does not hold. For example for a potential V reflection symmetric with respect to Σ (i.e., $V\left(x^{\prime}, x_{n}\right)=V\left(x^{\prime},-x_{n}\right)$) eigenfunctions with vanishing traces on Σ may exist.

In order to characterize all eigenvalues and eigenspaces of A we define the block operator matrix function \mathcal{M} via

$$
\mu \mapsto \mathcal{M}(\mu):=\left[\begin{array}{cc}
M(\mu) & -M(\mu) M^{-}(\mu) \\
-M^{-}(\mu) M(\mu) & -M^{-}(\mu) M(\mu) M^{+}(\mu)
\end{array}\right], \quad \mu \in \mathbb{C} \backslash \mathbb{R} .
$$

$\mathcal{M}(\mu)$ is an operator in $L^{2}(\Sigma) \times L^{2}(\Sigma)$ with domain $H^{\frac{1}{2}}(\Sigma) \times H^{\frac{3}{2}}(\Sigma)$ and range in $H^{\frac{3}{2}}(\Sigma) \times H^{\frac{1}{2}}(\Sigma)$. The function \mathcal{M} is holomorphic in the strong sense and can be extended to a strongly holomorphic function (also denoted by \mathcal{M}) defined on $\rho(A)$. Similar functions were already considered in, e.g., [5] for the ODE case and in [6,7] in an abstract setting.

Theorem 2.2 $\lambda \in \mathbb{R}$ is a pole of \mathcal{M} and $\operatorname{ran}_{\operatorname{Res}}^{\lambda} \boldsymbol{\mathcal { M }}$ is finite-dimensional if and only if λ is an isolated eigenvalue of A with finite multiplicity. In this case the map

$$
\mathcal{T}: \operatorname{ker}(A-\lambda) \rightarrow \operatorname{ran} \operatorname{Res}_{\lambda} \mathcal{M}, \quad u \mapsto\left[\left.u\right|_{\Sigma},-\left.\partial_{n} u\right|_{\Sigma}\right]^{\top} .
$$

is bijective.
We omit the proof of Theorem 2.2, which uses methods similar to the proof of Theorem 2.1 and a unique continuation argument; cf. [4] for a similar reasoning.

Remark 2.3 With the help of the function \mathcal{M} one can even characterize all (embedded and isolated) eigenvalues and the corresponding eigenspaces of A; cf. [4] for the case of a Schrödinger operator on an exterior domain.

Acknowledgements The authors gratefully acknowledge financial support by the Austrian Science Fund (FWF): P 25162-N26.

References

[1] A. Nachman, J. Sylvester, and G. Uhlmann, Comm. Math. Phys. 115, 595-605 (1988).
[2] J. Behrndt and J. Rohleder, Comm. Partial Differential Equations 37, 1141-1159 (2012).
[3] W.O. Amrein and D.B. Pearson, J. Comput. Appl. Math. 171, 1-26 (2004).
[4] J. Behrndt and J. Rohleder, arXiv:1208.5224v2 (2012).
[5] A. Dijksma, H. Langer, and H.S.V. de Snoo, CMS Conf. Proc. 8, 87-116 (Amer. Math. Soc., 1987).
[6] V.A. Derkach, S. Hassi, M.M. Malamud, and H.S.V. de Snoo, Methods Funct. Anal. Topology 6, $24-55$ (2000).
[7] V.A. Derkach, S. Hassi, M.M. Malamud, and H.S.V. de Snoo, Russ. J. Math. Phys. 16, 17-60 (2009).

[^0]: * Corresponding author: e-mail kuehn@tugraz.at, phone +43316873 8625, fax +433168738621

