Fast Parallel Solution of Boundary Integral
Equations and Related Problems

Mario Bebendorf
University of Leipzig

bebendorf@math.uni-leipzig.de

joint work with R. Kriemann, MPIl MIS, Leipzig

>

>

>

>

>

Overview
What are H-matrices ?

The ACA method
parallel version of ACA — building O(n/plog™n)
parallel matrix-vector multiplication — O(n/plog™ n)

numerical examples

What are H-matrices ?

Partition of the coefficient matrix into blocks

P:{b:(tl,tg), tl,tQCI}, I:{].,,N}

with pairwise disjoint P and

Ix1= U t X to.
(t1,t2)EP

What are H-matrices ?

Partition of the coefficient matrix into blocks

P:{b:(tl,tg), tl,tQCI}, I:{l,,N}

with pairwise disjoint P and

I x 1= U t1 X to.
(t1,t2)EP

Blockwise low-rank approximation (M has full rank !)
H(P, k) := {M € RY*N : rank M|, < k for all b e P}

What are H-matrices ?

Partition of the coefficient matrix into blocks

P:{b:(tl,tg), tl,tQCI}, I:{l,,N}

with pairwise disjoint P and

I x 1= U t1 X to.
(t1,t2)EP

Blockwise low-rank approximation (M has full rank !)
H(P, k) := {M € RY*N : rank M|, < k for all b e P}

Admissibility condition on a block b = (¢1,t2):
min{diam X; ,diam Xy, } < ndist(X;,, Xy,), 0<n<1

or min{#t,#t>} = 1, where X; :=J,., supp ;.
Number of generated blocks is O(n=2(@=1 N log N).

M. Bebendorf, Univ. of Leipzig 3

The ACA-Algorithm (Building)

Focus on a single admissible block A € R™*";

let k=1, Z =0
repeat
if &> 1 then iy := argmax,y,|(ux—1)l

else iy :=min{l,... m}\ Z
Vg 1= Qjp,1:m — 7;:—11 (u€>ikv€

/=7 U {Zk}
if v, does not vanish then
Ji = argmax;_y o[(Uk);l; vk = (Uk);, Uk

k_
Uk 1= QL — Doy (V0) s, Ue-

k=k+1
endif
until the following stopping criterion is fulfilled
k—1
lugllz loglle < el Y uevy |7
=1

M. Bebendorf, Univ. of Leipzig

Convergence proof exists (Beb. 99 / 00, Beb. & Rjasanow ’03) for

> Nystrom matrices:
aij = K(Yi, Yj)
> collocation matrices:
Qij Z/H&(wyyi)@j(w) dsg.
I

> Radiation heat transfer:

Q;j = / / s(x,y) (n2, 2 — y) (ny,y — @) dsy dsy.
r; JT;

|z — yl|*

Convergence proof exists (Beb. 99 / 00, Beb. & Rjasanow ’03) for

> Nystrom matrices:
aij = K(Yi, Yj)

> collocation matrices:
Qij Z/%(w,yi)w(w) dsg.
I

> Radiation heat transfer:

Q;j = / / s(x,y) (n2, 2 — y) (ny,y — @) ds, ds,.
r; JT;

|z — y|*

Theorem: Let (X, X;) be an admissible pair of domains and « be an
asymptotically smooth kernel. In the case of Galerkin matrices

Qi :///i(x,y)gpj(x)goi(y) dsyds,, t=1,....,m,j=1,...,n
rJr
for |Z| > n, it holds that

: 1
|(B)ij] < edist?(Xs, Xe) [l @il o1 ll@slln®, 0 <n<-.

M. Bebendorf, Univ. of Leipzig 5

Generating the H-matrix approximant

Sequential computation of an H-matrix approximant:

for all be P do
if b is admissible then
create low-rank matrix using ACA
else
create a dense matrix
endif
endfor

Generating the H-matrix approximant

Sequential computation of an H-matrix approximant:

for all be P do
if b is admissible then
create low-rank matrix using ACA
else

create a dense matrix
endif
endfor

] Computation in both cases is fully independent — can be done in parallel

O for load balancing, prior knowledge of the amount of work per block is
needed

[0 ACA is adaptive — no apriori info about cost for block.

M. Bebendorf, Univ. of Leipzig 6

Alternative to cost-related load balancing: list scheduling.

for all b€ P do
let 0 <7 < p be the number of the first idle processor

if b is admissible then
create a low-rank matrix using ACA on processor ¢

else
create a dense matrix on processor ¢

endif
endfor

Alternative to cost-related load balancing: list scheduling.

for all b€ P do
let 0 <7 < p be the number of the first idle processor
if b is admissible then
create a low-rank matrix using ACA on processor ¢
else
create a dense matrix on processor ¢
endif
endfor

Guaranteed parallel efficiency:

Let
t(p) time for n jobs on p processors using list scheduling
tmin(p) mMinimal time needed for n jobs on p processors,
then

t(p) < (2 = %) tmin(P)-

M. Bebendorf, Univ. of Leipzig

Shared Memory Systems

Widely used on shared memory systems: threads.
> share same address space — no communication between processors

> distribution of threads among processors by operating system

Shared Memory Systems

Widely used on shared memory systems: threads.
> share same address space — no communication between processors

> distribution of threads among processors by operating system

Standard interface: POSIX-threads
0 complicated

[] creation of Pthreads expensive — only a pool of p threads started

[user interface: C++ class

class ThreadPool {
init (pe N);
run (Job j);
sync (Job j);
sync_all ();

M. Bebendorf, Univ. of Leipzig

M. Bebendorf, Univ. of Leipzig

procedure build_block(b)
if b is admissible then
build low-rank matrix using ACA
else
build a dense matrix
endif
end

ThreadPool->init(p)
for all be P do
ThreadPool->run(build_block(b))
endfor
ThreadPool->sync_all()

Results on SunFire 6800 (24 Proc, 96 GB):

n p=1 p=4 p =2~
4416 54.4 s 13.7 s 6.9 s
16 128 177.0 s | 44.6 s | 22.5 s
89412 | 2097.9 s | 528.7 s | 271.6 s

Parallel efficiency

t(1
B = 1)

S
=
E

4416 | 99.3% | 98.6% | 98.6% | 94.4%
16128 | 99.2% | 98.3% | 96.4% | 93.8%
89412 | 99.2% | 96.6% | 96.7% | 94.1%

M. Bebendorf, Univ. of Leipzig

10

Parallel Matrix-Vector Multiplication

Aim: Calculate y := Ax on p processors, where A is an H-matrix, with
O(n/plog™n) complexity.

Naive approach: distribute the blocks among the processors

Problem: processors write to the same part of y
— p temporary vectors of length > n/p = O(n) complexity

ppppp

Parallel Matrix-Vector Multiplication

Aim: Calculate y := Ax on p processors, where A is an H-matrix, with
O(n/plog™n) complexity.

Naive approach: distribute the blocks among the processors
Problem: processors write to the same part of y
— p temporary vectors of length > n/p = O(n) complexity

ppppp

Solution: each processor writes to a private part of y

large blocks UV' are split among different processors

» = V1z does not have to be calculated on all processors
sharing a block (calculate beforehand)

M. Bebendorf, Univ. of Leipzig 11

MV-Algorithm
> partition y (use sequence partitioning)
> calculate z := V'« for all shared blocks (use LPT-scheduling)

> matrix-vector multiplications in each stripe

M. Bebendorf, Univ. of Leipzig

12

How to partition y ?

Partition y so that cost is minimal.
Let cp(b) be given and let i € I. Define

c(i) = Z cp((s:t))l:

i€t:(s,t)EP

and for t € T\ L(T)
cr(t)= Y et
t'eS(t)
where c;(t) =) .., c(i) for t € L(T).
For S C 17 let C](S) — ZteS C](t).

How to partition y ?

Partition y so that cost is minimal.
Let cp(b) be given and let i € I. Define

diy=" Y cp((s0)l

i€t:(s,t)EP

and for t € T\ L(T)
cr(t)= > et

t'eS(t)
where c;(t) =) .., c(i) for t € L(T).
For S C 17 let C](S) — ZtES C](t).

Sequence partitioning:

{1,...,N}:OSZ-, Si i=A{ri—1,...,7:}
where 1 =7ro <r; <--- grpzzj\;.
Sequence partitioning optimal if maxo<;<,cr(S;) minimal.

M. Bebendorf, Univ. of Leipzig

13

Shared blocks

Longest-Process-Time (LPT) scheduling for shared low-rank blocks:
job with maximal cost to the processor with lowest load

1) < (5 - 55) tunl®)

Results: Time for 100 MV multiplications

Guaranteed:

n p=1 | p=4 | p=8 | p=12 | p=16
4416 18.8s 5.1s | 2.7s 1.8s 1.4s
16128 | 62.2s | 17.3s | 8.9s 6.1s 4.6s
89412 | 664.0s | 183.1s | 93.5s | 64.7s | 49.4s

n p=4 | p=8 | p=12 | p=16
4416 | 92.1% | 87.0% | 85.0% | 84.0%
16128 | 89.9% | 87.4% | 85.2% | 84.1%
89412 | 90.7% | 88.8% | 85.5% | 84.0%

M. Bebendorf, Univ. of Leipzig 14

