Fast Parallel Solution of Boundary Integral Equations and Related Problems

Mario Bebendorf University of Leipzig

bebendorf@math.uni-leipzig.de

joint work with R. Kriemann, MPI MIS, Leipzig

Overview

- ▶ What are H-matrices ?
- ▶ The ACA method
- ightharpoonup parallel version of ACA ightharpoonup building $\mathcal{O}(n/p\log^* n)$
- ightharpoonup parallel matrix-vector multiplication $ightharpoonup \mathcal{O}(n/p\log^* n)$
- numerical examples

What are \mathcal{H} -matrices ?

Partition of the coefficient matrix into blocks

$$P = \{b = (t_1, t_2), t_1, t_2 \subset I\}, I := \{1, \dots, N\}$$

with pairwise disjoint P and

$$I \times I = \bigcup_{(t_1, t_2) \in P} t_1 \times t_2.$$

What are \mathcal{H} -matrices ?

Partition of the coefficient matrix into blocks

$$P = \{b = (t_1, t_2), t_1, t_2 \subset I\}, I := \{1, \dots, N\}$$

with pairwise disjoint P and

$$I \times I = \bigcup_{(t_1, t_2) \in P} t_1 \times t_2.$$

Blockwise low-rank approximation (M has full rank !)

$$\mathcal{H}(P,k) := \{ M \in \mathbb{R}^{N \times N} : \operatorname{rank} M|_b \le k \text{ for all } b \in P \}$$

What are \mathcal{H} -matrices ?

Partition of the coefficient matrix into blocks

$$P = \{b = (t_1, t_2), t_1, t_2 \subset I\}, I := \{1, \dots, N\}$$

with pairwise disjoint P and

$$I \times I = \bigcup_{(t_1, t_2) \in P} t_1 \times t_2.$$

Blockwise low-rank approximation (M has full rank !)

$$\mathcal{H}(P,k) := \{ M \in \mathbb{R}^{N \times N} : \operatorname{rank} M|_b \le k \text{ for all } b \in P \}$$

Admissibility condition on a block $b = (t_1, t_2)$:

$$\min\{\operatorname{diam} X_{t_1}, \operatorname{diam} X_{t_2}\} \le \eta \operatorname{dist}(X_{t_1}, X_{t_2}), \quad 0 < \eta < 1$$

or $\min\{\#t_1, \#t_2\} = 1$, where $X_t := \bigcup_{i \in t} \operatorname{supp} \varphi_i$. Number of generated blocks is $\mathcal{O}(\eta^{-2(d-1)}N \log N)$.

The ACA-Algorithm (Building)

Focus on a single admissible block $A \in \mathbb{R}^{m \times n}$:

Let
$$k=1$$
; $Z=\varnothing$ repeat if $k>1$ then $i_k:=\operatorname{argmax}_{i\not\in Z}|(u_{k-1})_i|$ else $i_k:=\min\{1,\ldots,m\}\setminus Z$ $\tilde{v}_k:=\operatornamewithlimits{a}_{i_k,1:n}-\sum_{\ell=1}^{k-1}(u_\ell)_{i_k}v_\ell$ $Z:=Z\cup\{i_k\}$ if \tilde{v}_k does not vanish then
$$j_k:=\operatorname{argmax}_{j=1,\ldots,n}|(\tilde{v}_k)_j|;\quad v_k:=(\tilde{v}_k)_{j_k}^{-1}\tilde{v}_k$$
 $u_k:=\operatornamewithlimits{a}_{1:m,j_k}-\sum_{\ell=1}^{k-1}(v_\ell)_{j_k}u_\ell$. $k:=k+1$ endif

until the following stopping criterion is fulfilled

$$||u_k||_2 ||v_k||_2 < \varepsilon ||\sum_{\ell=1}^{k-1} u_\ell v_\ell^T||_F.$$

Convergence proof exists (Beb. '99 / '00, Beb. & Rjasanow '03) for

Nyström matrices:

$$a_{ij} = \kappa(y_i, y_j)$$

> collocation matrices:

$$a_{ij} = \int_{\Gamma} \kappa(x,y_i) arphi_j(x) \, \mathrm{d} s_x.$$

▶ Radiation heat transfer:

$$a_{ij} = \int_{\Gamma_i} \int_{\Gamma_j} s(x, y) \frac{(n_x, x - y) (n_y, y - x)}{|x - y|^4} ds_x ds_y.$$

Convergence proof exists (Beb. '99 / '00, Beb. & Rjasanow '03) for

> Nyström matrices:

$$a_{ij} = \kappa(y_i, y_j)$$

$$a_{ij} = \int_{\Gamma} \kappa(x,y_i) arphi_j(x) \, \mathrm{d} s_x.$$

▶ Radiation heat transfer:

$$a_{ij} = \int_{\Gamma_i} \int_{\Gamma_j} s(x, y) \frac{(n_x, x - y) (n_y, y - x)}{|x - y|^4} ds_x ds_y.$$

Theorem: Let (X_s, X_t) be an admissible pair of domains and κ be an asymptotically smooth kernel. In the case of Galerkin matrices

$$a_{ij} = \int_{\Gamma} \int_{\Gamma} \kappa(x, y) \varphi_j(x) \varphi_i(y) \, ds_x \, ds_y, \quad i = 1, \dots, m, \ j = 1, \dots, n$$

for $|Z| \ge n_p$ it holds that

$$|(R_k)_{ij}| \le c \operatorname{dist}^g(X_s, X_t) \|\varphi_i\|_{L^1} \|\varphi_j\|_{L^1} \eta^p, \quad 0 < \eta < \frac{1}{d}.$$

Generating the \mathcal{H} -matrix approximant

Sequential computation of an \mathcal{H} -matrix approximant:

```
for all b \in P do if b is admissible then create low-rank matrix using ACA else create a dense matrix endif
```

Generating the \mathcal{H} -matrix approximant

Sequential computation of an \mathcal{H} -matrix approximant:

```
for all b \in P do if b is admissible then create low-rank matrix using ACA else create a dense matrix endif
```

- \boldsymbol{x} Computation in both cases is fully independent \rightarrow can be done in parallel
- **X** for load balancing, prior knowledge of the amount of work per block is needed
- imes ACA is adaptive o no apriori info about cost for block.

Alternative to cost-related load balancing: list scheduling.

```
for all b \in P do let 0 \le i < p be the number of the first idle processor if b is admissible then create a low-rank matrix using ACA on processor i else create a dense matrix on processor i endifended
```

Alternative to cost-related load balancing: list scheduling.

```
for all b \in P do let 0 \le i < p be the number of the first idle processor if b is admissible then create a low-rank matrix using ACA on processor i else create a dense matrix on processor i endiferends endfor
```

Guaranteed parallel efficiency:

Let

t(p) time for n jobs on p processors using list scheduling $t_{\min}(p)$ minimal time needed for n jobs on p processors,

then

$$t(p) \le \left(2 - \frac{1}{p}\right) t_{\min}(p).$$

Shared Memory Systems

Widely used on shared memory systems: threads.

- \triangleright share same address space \rightarrow no communication between processors
- distribution of threads among processors by operating system

Shared Memory Systems

Widely used on shared memory systems: threads.

- \triangleright share same address space \rightarrow no communication between processors
- distribution of threads among processors by operating system

Standard interface: POSIX-threads

- **x** complicated
- **x** creation of Pthreads expensive \rightarrow only a pool of p threads started
- **x** user interface: C++ class

```
class ThreadPool { init ( p \in \mathbb{N} ); run ( Job j ); sync ( Job j ); sync_all (); }
```

```
procedure build_block(b)
    if b is admissible then
        build low-rank matrix using ACA
    else
        build a dense matrix
    endif
end
ThreadPool->init(p)
for all b \in P do
    ThreadPool->run(build_block(b))
endfor
ThreadPool->sync_all()
```

Results on SunFire 6800 (24 Proc, 96 GB):

n	p=1	p=4	p = 8	p = 12	p = 16
$\overline{4416}$	54.4 s	13.7 s	6.9 s	4.6 s	3.6 s
16 128	177.0 s	44.6 s	22.5 s	15.3 s	11.8 s
89 412	2097.9 s	528.7 s	271.6 s	180.7 s	139.3 s

Parallel efficiency

$$E_{\mathsf{par}} = \frac{t(1)}{p \cdot t(p)}$$

n	p=4	p=8	p = 12	p = 16
$\overline{4416}$	99.3%	98.6%	98.6%	94.4%
16 128	99.2%	98.3%	96.4%	93.8%
89 412	99.2%	96.6%	96.7%	94.1%

Parallel Matrix-Vector Multiplication

Aim: Calculate y := Ax on p processors, where A is an \mathcal{H} -matrix, with $\mathcal{O}(n/p\log^* n)$ complexity.

Naive approach: distribute the blocks among the processors Problem: processors write to the same part of y $\rightarrow p$ temporary vectors of length $\geq n/p \Rightarrow \mathcal{O}(n)$ complexity

Parallel Matrix-Vector Multiplication

Aim: Calculate y := Ax on p processors, where A is an \mathcal{H} -matrix, with $\mathcal{O}(n/p\log^* n)$ complexity.

Naive approach: distribute the blocks among the processors Problem: processors write to the same part of y $\rightarrow p$ temporary vectors of length $\geq n/p \Rightarrow \mathcal{O}(n)$ complexity

Solution: each processor writes to a private part of y large blocks UV^T are split among different processors $z=V^Tx$ does not have to be calculated on all processors sharing a block (calculate beforehand)

MV-Algorithm

- partition y (use sequence partitioning)
- ightharpoonup calculate $z:=V^Tx$ for all shared blocks (use LPT-scheduling)
- matrix-vector multiplications in each stripe

How to partition y?

Partition y so that cost is minimal. Let $c_P(b)$ be given and let $i \in I$. Define

$$\tilde{c}(i) = \sum_{i \in t: (s,t) \in P} c_P((s,t))|_i$$

and for $t \in T \setminus \mathcal{L}(T)$

$$c_I(t) = \sum_{t' \in S(t)} c_I(t')$$

where $c_I(t) = \sum_{i \in t} \tilde{c}(i)$ for $t \in \mathcal{L}(T)$. For $S \subset T_I$ let $c_I(S) = \sum_{t \in S} c_I(t)$.

How to partition y?

Partition y so that cost is minimal. Let $c_P(b)$ be given and let $i \in I$. Define

$$\tilde{c}(i) = \sum_{i \in t: (s,t) \in P} c_P((s,t))|_i$$

and for $t \in T \setminus \mathcal{L}(T)$

$$c_I(t) = \sum_{t' \in S(t)} c_I(t')$$

where $c_I(t) = \sum_{i \in t} \tilde{c}(i)$ for $t \in \mathcal{L}(T)$. For $S \subset T_I$ let $c_I(S) = \sum_{t \in S} c_I(t)$.

Sequence partitioning:

$$\{1,\ldots,N\} = \bigcup_{i=1}^{p} S_i, \qquad S_i := \{r_{i-1},\ldots,r_i\}$$

where $1 = r_0 \le r_1 \le \dots \le r_p = N$.

Sequence partitioning optimal if $\max_{0 \le i < p} c_I(S_i)$ minimal.

Shared blocks

Longest-Process-Time (LPT) scheduling for shared low-rank blocks: job with maximal cost to the processor with lowest load

Guaranteed:

$$t(p) \le \left(\frac{4}{3} - \frac{1}{3p}\right) t_{\min}(p).$$

Results: Time for 100 MV multiplications

n	p = 1	p=4	p=8	p = 12	p = 16
$\overline{4416}$	18.8s	5.1s	2.7s	1.8s	1.4s
16 128	62.2s	17.3s	8.9s	6.1s	4.6s
89 412	664.0s	183.1s	93.5s	64.7s	49.4s

n	p=4	p=8	p = 12	p = 16
$\overline{4416}$	92.1%	87.0%	85.0%	84.0%
16 128	89.9%	87.4%	85.2%	84.1%
89 412	90.7%	88.8%	85.5%	84.0%