Institut für Angewandte Mathematik
Univ.-Prof. Dr. Olaf Steinbach
Dr. Richard Löscher
Space-Time Methods
Let

$$
Y:=L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \quad X:=\left\{u \in Y: \partial_{t} u \in Y^{\prime}, u(0)=0 \text { in } \Omega\right\},
$$

and

$$
b(u, v):=\left\langle\partial_{t} u, v\right\rangle_{Q}+\left\langle\nabla_{x} u, \nabla_{x} v\right\rangle_{L^{2}(Q)} \quad \text { for } u \in X, v \in Y .
$$

Define

$$
\mathcal{B}(u, p ; q, v):=\left\langle\nabla_{x} p, \nabla_{x} v\right\rangle_{L^{2}(Q)}+b(u, v)+b(q, p) \quad \text { for } u, q \in X, p, v \in Y,
$$

and

$$
\|(u, p)\|_{X \times Y}:=\sqrt{\|u\|_{X}^{2}+\|p\|_{Y}^{2}} .
$$

6. Prove the boundedness

$$
|\mathcal{B}(u, p ; q, v)| \leq c_{2}^{B}\|(u, p)\|_{X \times Y}\|(q, v)\|_{X \times Y}
$$

with a suitable positive constant c_{2}^{B}.
7. Prove the inf-sup stability condition

$$
c_{1}^{B}\|(u, p)\|_{X \times Y} \leq \sup _{(0,0) \neq(q, v) \in X \times Y} \frac{\mathcal{B}(u, p ; q, v)}{\|(q, v)\|_{X \times Y}} \quad \text { for all }(u, p) \in X \times Y .
$$

Hints: For $u \in X$ define $w \in Y$ such that $\left\|\partial_{t} u\right\|_{Y^{\prime}}=\|w\|_{Y}$. For $p \in Y$ and for a suitable chosen $\alpha \in \mathbb{R}_{+}$define $\bar{v}:=u+w+\alpha p \in Y$ and $\bar{q}:=-\alpha u \in X$. Use

$$
a b \leq \frac{1}{2 \gamma} a^{2}+\frac{1}{2} \gamma b^{2}, \quad \gamma>0
$$

and define γ and α appropriately.
Instead of the heat equation we now consider the diffusion-convection equation

$$
-\Delta u(x)+\underline{b}(x) \cdot \nabla u(x)=f(x) \quad \text { for } x \in \Omega, \quad u(x)=0 \quad \text { for } x \in \Gamma:=\partial \Omega,
$$

where \underline{b} is a given bounded velocity field satisfying $\operatorname{div} \underline{b}=0$. Define

$$
Y:=H_{0}^{1}(\Omega), \quad X:=\left\{u \in Y: \underline{b} \cdot \nabla u \in Y^{\prime}\right\} .
$$

8. Derive a variational formulation to determine a solution $u \in X$ and prove a related inf-sup stability condition.
9. Derive a related least-squares formulation and prove ellipticity of the associated Schur complement operator which is of the form $S=B^{\prime} A^{-1} B$.
10. Introduce conforming finite element spaces $X_{H} \subset X$ and $Y_{h} \subset Y$ of piecewise linear basis functions, and define an appropriate approximation $\widetilde{S} u=B^{\prime} p_{h}$ by an approximate solution of the operator equation $A p=B u$. Prove discrete ellipticity of \widetilde{S} when considering an appropriate choice of the mesh sizes h and H.
Hint: Recall the regularity of piecewise linear finite element functions.
