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Abstract

Permanent magnet-assisted synchronous reluctance mo-
tors (PMSynRM) have a significantly higher average
torque than synchronous reluctance motors. Thus, deter-
mining an optimal design results in a multi-material topol-
ogy optimization problem, where one seeks to distribute
ferromagnetic material, air and permanent magnets within
the rotor in an optimal manner.This study proposed a novel
density-based distribution scheme, which allows for con-
tinuous magnetization direction instead of a finite set of
angles. Thus, an interpolation scheme is established be-
tween properties pertaining to magnets and non-linear ma-
terials. This allows for new designs to emerge without in-
troducing complex geometric parameterization or relying
on the user’s biases and intuitions. Toward reducing com-
putation time, Nitsche-type mortaring is applied, allow-
ing for free rotation of the rotor mesh relative to the sta-
tor mesh. The average torque is approximated using only
four-point static positions. This study investigates several
interpolation schemes and presents a new one inspired by
the topological derivative. We propose to filter the final de-
sign for the magnetization angle using K-mean clustering
accounting for technical feasibility constraints of magnets.
Finally, the design of the electrical motor is proposed to
maximize torque value.

Keywords: Topology optimization, Permanent mag-
nets machines, Design optimization, Acceleration methods

*E-Mail:thomas.gauthey(at)geeps.centralesupelec.fr
†E-Mail: gangl(at)math.tugraz.at
‡E-Mail: maya.hage-hassan(at)centralesupelec.fr

1 Introduction

Synchronous reluctance machines (SynRM) are standard
in households and industrial applications, thanks to their
cheap cost compared to permanent magnet motors and ad-
vances in manufacturing techniques. Although the deploy-
ment of these machines continues [15], PMSynRM of-
fers an excellent alternative for both structures, solving for
SynRM, its poor power factor and, for permanent mag-
net machines (PMM), its cost. The design of these ma-
chines using parametric optimization often necessitates ei-
ther complex analytical models or the use of Finite Ele-
ment Analysis (FEA) relying heavily on experienced engi-
neers and known good designs [23].
Density based optimizations allow for bypassing such
cumbersome frameworks. Although they were first devel-
oped for two materials application in continuous mechan-
ics [33], a rise in n-materials optimization in the field of
electromagnetics has allowed for new PMM and SynRM
to emerge [14, 18]. In most optimizations where perma-
nent magnets are involved, magnetization direction are
fixed [29] or limited to a set of a couple values [6,7,20]. If
continuous directions are considered during the optimiza-
tion process, the final design is filtered to take into account
only a couple of predefined directions to meet manufactur-
ing constraints [17, 36].
In this paper we propose a simultaneous density-based op-
timization scheme consisting of three-material (air-iron-
magnet) with a continuous magnetization direction. The
proposition is applied to design the rotor of a distributed
winding stator as described in [11, 25] to maximize the
mean torque under constraints. The final designs are fil-
tered using an unbiased K-means heuristic for accounting
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Figure 1: Machine geometry

Table 1: Geometric parameters

Parameter Value

Slot number 24
Axial length 50.0 mm
Outer rotor radius 18.5 mm
Inner stator radius 26.5 mm
Outer stator radius 47.5 mm
Air gap length 8.0 mm

for feasibility constraints. Here, we propose also to accel-
erate the torque calculation through a four-point method.

2 Problem description

We chose to investigate a SynRM described in [11, 25],
of which the rotor design had proven to be a challenging
problem for topology optimization and use it for our PM-
SynRM optimization problem.

2.1 Geometry description

The electrical machine geometry and current density dis-
tributions are given respectively in Figure 1 and 2. The di-
mensions for the considered machine are given in Table
1.

This machine differs from most conventional SynRM
by its large air gap which constrains the statoric winding
distribution to only one pair of poles (cf. Figure 2).

We introduce the relationship between the electrical
angle θelec and the mechanical angle θ

θelec = nppθ , (2.1)

with npp the number of pair of poles, here npp = 1.

Figure 2: Statoric winding distribution and current param-
eters

Table 2: Statoric winding parameters

Parameter Value

Number of turn Ns 64
Winding type Distributed
Connection type Star
Resistance (RS,20◦C) 7.1 Ω

Voltage Ue f f 230 V
Peak intensity Imax 12 A
Number of pole pairs npp 1

We define the three phases as follows:
IU (θ) = Imaxcos(nppθ +ϕ)

IV (θ) = Imaxcos
(
nppθ +ϕ− 2π

3

)
IW (θ) = Imaxcos

(
nppθ +ϕ− 4π

3

)
.

(2.2)

Here, ϕ is the phase angle. The computational domain Ω

consists of iron, air, permanent magnet and coils,

Ω = Ω f ∪Ωair ∪Ωmag∪Ωc (2.3)

where we further subdivide the ferromagnetic and air sub-
domains into their rotor and stator parts,

Ω f = Ω f ,stat ∪Ω f ,rot , Ωair = Ωair,stat ∪Ωair,rot .
(2.4)

Moreover, we subdivide the coil subdomains according to
the distribution shown in Figure 2,

Ωc = ΩU+ ∪ΩU− ∪ΩV+ ∪ΩV− ∪ΩW+ ∪ΩW− . (2.5)

2.2 Partial differential equation
In the two-dimensional magnetostatic setting, the mag-
netic flux density B = curl((0,0,u)>) for rotor position

2



θ ∈ [0,2π] can be computed via the solution of the bound-
ary value problem

Find u ∈ H1
0 (Ω) :

∫
Ω

νθ (x, |∇u|)∇u ·∇vdx =∫
Ωc

j(θ)vdx+
∫

Ωθ
mag

Rθ

[
−My
Mx

]
·∇vdx

(2.6)

for all v ∈ H1
0 (Ω), see e.g. [26].

Here, the magnetic reluctivity is a nonlinear function ν̂ of
the flux density |B|= |∇u| in the ferromagnetic subdomain
and a constant ν0 = 107/(4π) elsewhere, i.e.,

νθ (x, |∇u|) =

{
ν̂(|∇u|) x ∈Ωθ

f

ν0 x ∈Ωθ
air ∪Ωc∪Ωθ

mag
(2.7)

with the rotated domains

Ω
θ
f =Ω f ,stat ∪Rθ Ω f ,rot (2.8)

Ω
θ
air =Ωair,stat ∪Rθ Ωair,rot (2.9)

Ω
θ
mag =Rθ Ωmag (2.10)

and Rθ a rotation matrix around angle θ ,

Rθ =

[
cosθ −sinθ

sinθ cosθ

]
. (2.11)

The first term on the right hand side of (2.6) represents the
impressed current density which is given by

j(x,θ) = χΩU+ (x) jU (θ)+χΩV+ (x) jV (θ)+χΩW+ (x) jW (θ)

−χΩU−
(x) jU (θ)−χΩV−

(x) jV (θ)−χΩW−
(x) jW (θ),

(2.12)

where χA denotes the characteristic function of a set A,

χA(x) =

{
1 x ∈ A,
0 else.

Here the current distribution is defined by :

jp(θ) =
1

Sslot
NsIp(θ), p ∈ {U,V,W} (2.13)

with Sslot the cross-sectional area of one coil, Ns the num-
ber of turns per coil and IU , IV , IW as defined in (2.2).
The second term on the right hand side of (2.6) represents
the magnetization M=(Mx,My)

> coming from permanent
magnets which will be added in the course of the multi-
material optimization procedure.

In the following, we will denote by uθ the solution to
the state equation (2.6).
We present here after the properties of interest of the ma-
terials (air,ferromagnetic,magnet) used in the machine.

Table 3: Material properties

Material Reluctivity [m.H−1] Magnetization [A.m−1]

Air ν0 0
Copper ν0 0
Ferromagnetic ν̂(|~B|) 0
Magnet ν0 Mmax

The maximum norm of the magnetization vector was
chosen as Mmax = 2.33 ·105A.m−2 to fit data from [28] on
ferrite magnets. The reluctivity of the magnets and of the
copper coils is assimilated to the one of air to simplify fur-
ther material interpolation and avoid complex schemes like
the ones found in [37]. The non-linear behaviour of the
ferromagnetic material is modelled with a Marrocco’s BH
curve approximation [24].

ν̂(|~B|) =


ν0(ε +

(c−ε)|~B|2α

τ+|~B|2α
‘ if |~B| ≤ Bmax,

ν0

(
1− Ms

|~B|

)
else if |~B|> Bs,

exp
(

γ(|~B|−β)
|~B|

)
otherwise,

(2.14)

where Bs = β +
log
(

ν0
γ

)
γ

and Ms = Bs +
1
γ

and the coeffi-
cient of the Marrocco curve in Figure3 are defined in the
Table 4.

Table 4: Marrocco curve coefficient for the ferromagnetic
material

Parameter Value

α 6.84
β -1.30·10−1

γ 4.86
ε 1.57 ·10−4

τ 4.14 ·103

c 1.90·10−2

Bmax 1.80 (T)

2.3 Torque computation method
For computing the torque, we chose a method based on
Maxwell’s stress tensor, Arkkio’s method [30]. While co-
energy torque computation methods were proven to be
more precise and less prone to error, they are more costly
in terms of computation time and not fit for optimization.
Using Arkkio’s method, the torque can be computed as

T =
Lzν0

rs− rr

∫
S

√
x2 + y2BrBφ dS (2.15)
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(a) Magnetic permeability

(b) Marrocco BH-curve

Figure 3: Non-linear characteristic for the ferromagnetic
material.

where Br and Bφ denote the radial and tangential magnetic
induction, respectively, Lz denotes the length of the ma-
chine in z-direction and S denotes the surface between radii
rs and rr in the air gap (with rs > rr).

In the setting of two-dimensional magnetostatics, the
torque for the rotor position given by angle θ thus amounts
to

Tθ = T (uθ ) =
Lzν0

rs− rr

∫
S

Q∇uθ ·∇uθ dS (2.16)

with Q(x,y) =

 xy√
x2+y2

y2−x2

2
√

x2+y2

y2−x2

2
√

x2+y2
−xy√
x2+y2

 ∈ R2×2. (2.17)

Determining the average torque by means of its instan-
taneous values can be very expensive. It is shown in [5]
that a good approximation to the average torque can be ob-
tained when evaluating the torque for only suitably chosen
rotor positions,

T̄ =
1
4

(
T0 +T π

12
+Tπ

6
+Tπ

4

)
. (2.18)

We compared the average torque obtained by evaluation at
500 equally distributed rotor positions between 0 and 2π

with the value obtained by the four-point formula (2.18).

Table 5: Four static positions method error

Design T̄ [N.m] T̄ [N.m] Error
(500 points) (4points) [%]

Unbiased starting point* 1.5790 ·10−6 5.7232 ·10−6 262.4
Final design Table 7 1.1123 1.1129 0.048
Final design Table 9 1.4513 1.4516 0.027

* in this design ρν = 0.5,ρMx = 0.5,ρMy = 0.5
everywhere in the rotor

When the torque value is not equal to zero, the error
found was to be lower than 0.1% as expected and described
in literature [1]. This is solved beyond the first iteration.

3 Optimization problem
In this section, we define our optimization problem and
reformulate the forward problem to fit the density-based
topology optimization approach. Our goal is to maximize
the average torque computed via (2.18),

(P1) :

{
maximize T̄ = 1

4

(
T (u0)+T (u π

12 )
+T (u π

6
)+T (u π

4
)
)

s.t. uθ is a solution of (2.6) for θ ∈ {0, π

12 ,
π

6 ,
π

4 }
(3.1)

This is achieved by finding the optimal material distribu-
tion consisting of ferromagnetic material, air and perma-
nent magnets on the one hand, and the optimal magnetiza-
tion direction of the permanent magnets on the other hand.
Moreover, we will incorporate a bound on the maximum
allowed permanent magnet volume.

3.1 Density based topology optimization
Let us reformulate the forward problem (2.6), introduc-
ing the three density variables respectively for the ferro-
magnetic material and the two components of the per-
manent magnets magnetization, ρν ,ρMx ,ρMy defined in
Ωθ

rot =Rθ (Ω f ,rot ∪Ωair,rot ∪Ωmag). Moreover we introduce
the rotated design variables

ρ
θ
ν (x,y) =ρν(Rθ ((x,y)>))

ρ
θ
Mx(x,y) =ρMx(Rθ ((x,y)>))

ρ
θ
My(x,y) =ρMy(Rθ ((x,y)>))

which represent the design given by ρν , ρMx , ρMy

after rotation, and the vector of design variables
X :=

[
ρν , ρMx , ρMy

]>.

Given two interpolation functions

fν : [0,1]→ [0,1], fM : [0,1]→ [0,1], (3.2)

4



we define the operator

Kθ : (X,u,v) 7→
∫

Ω

ν(ρθ
ν , |∇u|)∇u ·∇v

−
∫

Ωrot

fν(1−ρ
θ
ν )

Mmax fM(|~Mθ |)
|~Mθ |

Rθ

[
−Mθ

y
Mθ

x

]
·∇v,

(3.3)

with the reluctivity function

ν(ρθ
ν , |∇u|) =


ν̂(|∇u|) in Ω f ,stat

ν0 in Ωc∪Ωair,stat

ν0 + fν(ρ
θ
ν )(ν̂(|∇u|)−ν0) in Ωrot

(3.4)

and with the components of the magnetization vector
~Mθ = (Mθ

x ,M
θ
y ) given in dependence of the two rotated

density variables ρθ
Mx

, ρθ
My

,

(Mθ
x ,M

θ
y ) = f̃sd(ρ

θ
Mx ,ρ

θ
My) (3.5)

for a mapping f̃sd which will be discussed later on. Hence,
the state equation (2.6) can be reformulated into

Find u ∈ H1
0 (Ω) :

Kθ (u,v,X) =
∫

Ωc

j(θ)vdx, for all v ∈ H1
0 (Ω).

(3.6)

The optimization problem (P1) can then be reformu-
lated into

(P2) :

{
maximize

X
T̄ = 1

4 ∑θ∈{0, π
12 ,

π

6 ,
π
4 }T (uθ )

s.t. uθ is a solution of the (3.6) θ ∈ {0, π

12 ,
π

6 ,
π

4 }
(3.7)

3.1.1 Material interpolation schemes

In density based topology optimization, the quality of the
final solution is dependant on the choice of interpolation
functions (equation (3.2)). We present here two existing
schemes and a novel one based on properties of the topo-
logical derivative.
The polynomial interpolation scheme

fn(ρ) = ρ
n n > 0, (3.8)

also referred to as SIMP (Solid Isotropic Material with Pe-
nalization), is the most used material interpolation scheme
for topology optimization and allows for easy penalization
of intermediate materials. However, it presents some sym-
metry issues and favors low ρ associated material in the
final design. In [31], the authors compared this scheme to
other schemes and concluded that the final design was not
as good as many other proposed ones.

Figure 5: D. Lukàš’s interpolation scheme

Figure 4: SIMP Polynomial interpolation scheme

To solve symmetry issues introduced by the classi-
cal polynomial interpolation, D. Lukàš introduced a new
scheme in [21]:

fλ (ρ) =
1
2

(
1+

1
arctan(λ )

arctan(λ (2ρ−1))
)
, λ > 0.

(3.9)

In this equation the particular invariant point ρ = 0.5 does
not promote intermediate materials, grey material depends
on λ values (cf. Figure 5).
High λ values permit to penalize intermediate materials
but can lead to a poor convergence of the algorithm. A pa-
rameter study for λ led us to choose λ = 5. This interpo-
lation method is chosen for the norm of the magnetization
vector ( fM in (3.6)). Finally, we propose a new interpo-
lation scheme as given in Figure 6,which is inspired by
the topological derivative as done in [2], see also the the
SIMP-All method for linear elasticity [9]. Here, we seek to
design a material interpolation function whose derivative

5



Figure 6: Topological derivative inspired interpolation
scheme

with respect to the density variable ρ coincides with the
topological derivative of the problem at ρ = 0 and ρ = 1.
When interpolating between two linear materials with re-
luctivity values ν0 and ν1, the conditions for the material
interpolation function f according to [2] would read

f (0) = 0,
f (1) = 1,
f ′(0) = 2ν0

ν0+ν1
,

f ′(1) = 2ν1
ν0+ν1

.

(3.10)

Due to the involved formula of the topological derivative
for nonlinear magnetostatics [3], a mathematically rigor-
ous extension of this method to the nonlinear setting is
not straightforward. However, inspired by the particular
behaviour of the Marrocco BH-curve where the magnetic
reluctivity is almost constant for low flux density values,
see Figure 3, we simply use this idea for that constant re-
luctivity value ν1 := ν0ε ≈ 124.94. Using cubic Hermite
interpolation for the conditions (3.10), we obtain the poly-
nomial

f (ρ) =
2ν0

ν0 +ν1
ρ− ν0−ν1

ν0 +ν1
ρ

2. (3.11)

Note that the term of order 3 happens to vanish.

3.1.2 Magnetization vector transform

We deal with two magnetization density variables ρMx

and ρMy in order to represent the magnetization direc-
tion (Mx,My). One way of relating these quantities to
each other would be to have ρMx represent the first and
ρMy the second coordinate, resulting in a representation
in Cartesian coordinates, which was also considered in
[36]. In this case, however, some magnetization directions
exhibit higher maximum magnetization than others, e.g.

(a) Interpolated BH curve for ρ = 0.25

(b) Interpolated BH curve for ρ = 0.75

(c) Interpolated BH curve for ρ = 0.9

Figure 7: Interpolated BH curves using material interpola-
tion scheme (3.11).
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Figure 8: Square to disk transform for the Magnetization
vector coordinates

ρMx = ρMy = 1 would correspond to |(Mx,My)
>| =

√
2

whereas for the magnetization direction pointing to the
right ρMx = 1, ρMy = 0.5 would yield a maximum magneti-
zation of |(Mx,My)

>|= 1, thus making the maximum mag-
netization angle dependent. As an alternative, one could
use polar coordinates and represent the magnetization di-
rection by just one periodic density function. In this case,
however, the ambiguity of angular values causes problems
in the gradient computation. We define a means of solv-
ing these issues without resorting to polar coordinates. We
decide on two density variables ρMx ,ρMy with values in
[0,1], but map them onto a disk, thereby avoiding an angle
dependent maximum magnetization value.

There are several mappings that approximately realize
such a square-to-disk transformation. In order to preserve
the angle,as much as possible, without being too computa-
tionally heavy, the elliptic grid mapping.

fsd(x,y) =

x
√

1− y2

2

y
√

1− x2

2

with (x,y) ∈ [−1,1]2. (3.12)

was chosen as a good compromise out of the methods
described in [10]. While the associated inverse transforma-
tion fds = f−1

sd given by

fds(u,v) =


1
2

(√
2+u2− v2 +2

√
2u−

√
2+u2− v2−2

√
2u
)

1
2

(√
2−u2 + v2 +2

√
2v−

√
2−u2 + v2−2

√
2v
)

(3.13)

is computationally more costly, it is only used once per
iteration and in post-processing. The mapping between the
magnetization density variables ρMx ,ρMy and the magneti-
zation vector ~M = (Mx,My) (3.5) is then given by

f̃sd(ρ
θ
Mx ,ρ

θ
My) = fsd(2(ρθ

Mx −0.5),2(ρθ
My −0.5)) (3.14)

3.2 Incorporation of volume constraints
Constraints on iron and magnets volume are added to avoid
having structures with disproportionate volumes of mate-

rial. Hence we add new constraints with the operator

Ivol : ρ 7→ 1
VΩrot

∫
Ωrot

ρ(x)dx (3.15)

representing the volume fraction inside the rotor domain
Ωrot of a material given by a density function ρ . Here,
Vrot =

∫
Ωrot

1 dx denotes the total area of Ωrot . Based on
(P2) we define a new constrained optimization problem

(P3) :


maximize T̄ = 1

4 ∑θ∈{0, π
12 ,

π

6 ,
π
4 }T (uθ )

s.t. uθ is a solution of (3.6), θ ∈ {0, π

12 ,
π

6 ,
π

4 }
Ivol(ρν)≤ fv, f

Ivol((1−ρν) |~M|)≤ fv,mag

(3.16)

with given upper bounds on the allowed ferromagnetic
and permanent magnet material fv, f , fv,mag ∈ [0,1], respec-
tively. We reformulate the inequality constraints of (P3)
using the augmented Lagrangian framework as described
in [27],

(P4) :


minimize L(X,u) =−T̄ (u)+ψ(hv, f (X),γ f ,µ)

+ψ(hv,mag(X),γmag,µ)

s.t. uθ is a solution of (3.6),θ ∈ {0, π

12 ,
π

6 ,
π

4 }
(3.17)

With the state vector

u := (u0,u π
12
,u π

6
,u π

4
). (3.18)

Here,{
hv, f (X) = fv, f − Ivol(ρν),

hv,mag(X) = fv,mag− Ivol((1−ρν) |~M|),
(3.19)

with the scalar function

ψ(t,σ ,µ) =

{
−σt + 1

2µ
t2 if t−µσ ≤ 0,

− µ

2 σ2 otherwise.
(3.20)

The positive scalar multipliers γ f ,γmag,µ are updated ac-
cording to the LANCELOT-Method of Multipliers pre-
sented in [27].

3.3 Adjoint Method
To solve the optimization problem (P4) as formulated in
(3.17) by a gradient descent algorithm, we introduce the
Lagrangian for the PDE-constrained problem (3.17)

L (X,u,w) = L(X,u)+ ∑
θ∈{0, π

12 ,
π

6 ,
π
4 }

Kθ (X,uθ ,wθ )−
∫

Ωstat

j(θ)wθ ,

(3.21)
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where w = (w0,w π
12
,w π

6
,w π

4
) is a vector of Lagrange

multipliers. The adjoint states λθ corresponding to prob-
lem (3.17) for different rotor positions θ are defined by
∂L
∂uθ

(X,uθ ,λθ ) = 0, i.e. λθ is the solution to

Find λθ ∈ H1
0 (Ω) :

∂Kθ

∂u
(X,uθ ,λθ )(v) =−

1
4

∂T
∂u

(uθ )(v)

(3.22)

for all v ∈ H1
0 (Ω). (3.23)

Here, the left and right hand side, respectively, involve
the operators

d
du

Kθ (X,u,λ )(v) =
d

du

(∫
Ω

ν(ρθ
ν , |∇u|)∇u ·∇λ

)
(v)

=
∫

Ω

ν(ρθ
ν , |∇u|)∇v ·∇λ +

∫
Ω

d
du

ν(ρθ
ν , |∇u|)(v)∇u ·∇λ

=
∫

Ω

ν(ρθ
ν , |∇u|)∇v ·∇λ +

∫
Ω

fν(ρ
θ
ν )

ν̂ ′(|∇u|)
|∇u|

(∇u ·∇v)(∇u ·∇λ )

d
du

T (u)(v) = 2
Lzν0

rs− rr

∫
S

Q∇u ·∇v dS.

(3.24)

Similarly to (3.18), we introduce the adjoint vector

λ := (λ0,λ π
12
,λ π

6
,λ π

4
). (3.25)

Hence, the sensitivity associated with (3.21) amounts to

∂L

∂X
(X,u,λ ) = ∑

θ∈{0, π
12 ,

π

6 ,
π
4 }

∂Kθ

∂X
(X,uθ ,λθ )

+
∂ψ(hv, f (X),γ f ,µ)

∂X
+

∂ψ(hv,mag(X),γmag,µ)

∂X
(3.26)

where we used that ∂T
∂X = 0 and ∂ j

∂X = 0.

3.4 Update method
Several methods exist to consider the movement in elec-
trical motors, such as the Moving Band (MB) technique
described in [8]. Even when using high order elements in
the MB, this method remains less accurate than the mortar
element method [4]. A variant of the mortar method, the
Nitsche method, is chosen to take into account the rota-
tion [16]. The operator Kθ will be replaced by KNM

θ
and L

by L̃ to fit the new formulation (detailed in Appendix.A).
We introduce a triangular mesh with a total of N

elements, with Nrot many elements inside the rotor do-
main Ωrot . We use piecewise linear and globally contin-
uous finite element basis functions to solve the state and
adjoint equations and we represent the density variables
ρν ,ρMx ,ρMy as piecewise constant functions on the mesh
corresponding to Ωrot . Thus, these density variables can be
represented by a vector of dimension Nrot consisting of the
values of the discrete functions in each element. We will

use the same notation ρν ,ρMx ,ρMy for the vectors repre-
senting the discretized density variables.

To comply with the bounds of the density variables, we
introduce the projected gradient as defined in [27, p. 520]

G :=
[
Pρν ,[0,1]

(
∂L̃
∂ρν

)
PρMx ,[0,1]

(
∂L̃

∂ρMx

)
PρMy ,[0,1]

(
∂L̃

∂ρMy

)]>
,

(3.27)

with the projection operator Pρ,[a,b] : RNrot →RNrot defined
by

(
Pρ,[a,b](X)

)
i =


Xi if ρi ∈]a,b[,
min(0,Xi) if ρi = a,
max(0,Xi) if ρi = b,

(3.28)

for i = 1, ...,Nrot . This in itself allows for finer geometry to
emerge by amplifying the relative importance of the gradi-
ent where change in the density function can be made.
From the sensitivity we derive the update equation at iter-
ation n

Xn+1
i = Q[0,1]

(
Xn

i − s
Gi

|Gi|

)
, for i = 1, ...,Nrot (3.29)

with the projection operator Q[a,b] :R3Nrot →R3Nrot defined
by (

Q[a,b](v)
)

i = max(a,min(b,vi)) (3.30)

for a vector v= (v1, . . . ,vNrot )
> ∈R3Nrot and i= 1, . . . ,Nrot ,

to enforce the bounds of the density variables. Here, s de-
notes the step size which is chosen in such a way that a
descent of the augmented Lagrangian is obtained,

L(Xn+1,un+1)< L(Xn,un) (3.31)

with un is the vector of states for the design represented by
Xn.

3.5 Filtering and projection method
In density-based topology optimization, checkerboard pat-
terns and small isolated elements of one material are
avoided using filtering methods at each step of gradient de-
scent. While this filtering has a regularizing effect on the
density variables, it may introduce more gray areas. There-
fore, in the next step, so-called projection methods are ap-
plied in order to get a more defined shape. This combina-
tion allows achieving smoother and more defined bound-
aries between the materials in the final design.

In our approach, in the first step we perform density
filtering by solving the PDE

−r2
∇

2
ρ +ρ = ρre f r > 0. (3.32)
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Figure 9: Comparison of projection curves for a varying β

parameter.

with ρre f the given density function, which is commonly
referred to as Helmholtz filtering [19]. This mesh-
independency filter modifies the sensitivity by averaging
on the neighbor cells. The parameter r is the radius of
influence of the filtering and is defined in our case as a
factor δ of the minimum representative mesh-element
length h, i.e. r = δ h.

For the projection step, we choose the function pro-
posed in [35],

fρcut ,β (ρ) =
tanh(β (ρ−ρcut))+ tanh(βρcut)

tanh(β (1−ρcut))+ tanh(βρcut)

ρcut ∈ [0,1];β > 0
(3.33)

with ρcut = 0.5 such as not to favor one material. The other
parameters δ and β are chosen to preserve the equilibrium
between the two parts of the filtering step.

We applied the filtering technique (3.32) and the pro-
jection technique (3.33) for the material densities. The
same PDE-based filter (3.32) is applied for the densities
ρMx and ρMy , to favor uniform magnetization direction in a
magnet area while the projection (3.33) is only applied on
|~M| to avoid scaling issues.

3.6 Direct penalization of intermediate ma-
terials

Some final designs can still present fuzzy boundaries and
intermediate material, especially if the optimization start-
ing point is near a local minimum. To help overcome this
issue, we propose to penalize the intermediate materials
directly as done in the phase-field topology optimization
method [13] and add to the cost function the following

term with a weight γ > 0:

Iγ(ρ) =
4γ

VΩrot

∫
Ωrot

ρ(x)(1−ρ(x))dx. (3.34)

The penalization is only applied on iron density ρν and the
magnetization norm |~M|.

3.7 Post-processing: K-mean heuristic
In our optimization problem we look for permanent mag-
netization directions which may change continuously in
space. In order to obtain designs which comply with feasi-
bility constraints, we here propose a post-processing step.
A K-mean heuristic [22] clustering method is applied.
Here, we suggest adapting it to create clusters of elements
of similar magnetization direction.
Let us define a point P = (px, py, pβM ) by its coordinates
px, py in the 2D plane and its magnetization angle pβM . We
define a set of k points C1, . . .Ck where C j = (cx, j,cy, j,−),
which we will refer to as centroids, and which are first ran-
domly sampled in the 2D plane.
Let P1, . . . ,PNrot be the centroids of the triangles in the ro-
tor domain Ωrot . At each step of the algorithm, we asso-
ciate each point Pi with the closest centroid C j ∈ Sk using
a modified 3D Euclidean distance dα . For two such points
Pi = (px,i, py,i, pβM ,i) and C j = (cx, j,cy, j,cβM , j), this modi-
fied distance function is defined as
dα :R3×R3→ R

(Pi,C j) 7→

√(
px,i− cx, j

Nx

)2

+

(
py,i− cy, j

Ny

)2

+α

(
pβM ,i− cβM , j

2π

)2

(3.35)

where Nx, Ny, α are three weighting constants which can
be used to tune the method.

By this procedure, we get k point clusters S1, . . . ,Sk
with S j = {Pi : dα(Pi,C j) < dα(Pi,Cl) for all l 6= j} for
j = 1, . . . ,k. Thus, all points in cluster S j are closer to point
C j in terms of dα than to any other centroid Cl .

The positions of the centroids C1, . . . ,Ck are then up-
dated according to the mean coordinates of the points as-
sociated with them,

C j← (µx, j,µy, j,µβM, j) where µx, j =
1

#S j
∑

Pi∈S j

px,i (3.36)

and µy, j,µβM, j defined analogously. Here, #S j denotes the
cardinality of S j. In the first iteration where cβM , j is not
defined, we use the modified 2D Euclidean distance dα=0.

4 Application to the magnetostatics
problem

All computations were conducted using the NGSolve [12,
32] framework with its python interface. Three sets of re-
sults are presented in this section to validate the proposed

9



strategy. For the different optimization sets, the starting
points are given in Table 6.
The first design in Table 6 is used for the Iron-Air opti-
mization. The results for the material distribution are given
in Table 7 for different volume fractions fν , f . These re-
sults are coherent with the literature of synchro-reluctant
actuators with distributed winding [34], with a phase an-
gle ϕ = 5π

6 and one pair of poles. This phase angle cor-
responds to the maximum torque of the machine. Results
can also be compared with results found in [11, 25] which
are validated by means of JMAG .
For the multi-material topology optimization including
magnets, the final design obtained at 40% of ferromagnetic
material is used as a starting point. Results for magnets
distribution are presented in Table 8. As expected, mag-
nets are distributed on the air barriers domain. Several
constraints on magnets volume were chosen. One should
note that the ferromagnetic distribution is modified at the
outer radius of the rotor. Without magnets, the reluctance
torque is equal to 1.0768 [N.m]. Optimized torque and
post-processed values after k-mean clustering are given,
the number of clusters is fixed to k = 5.
In order to validate the proposed strategy, a new phase an-
gle is chosen. It is equal to ϕ = 3π

32 . The objective is to find
the optimal materials distribution to maximize the torque
at this phase angle. An unbiased starting point is chosen,
where homogeneous grey materials are set in the rotor
such as ρν = 0.5,ρMx = 0.5,ρMy = 0.5. The optimal rotor
structure is given in Table 9. Again, we present optimized
torques as well as the torque values after post-processing,
where we used k = 5 clusters for the K-mean clustering.
Results on the torque value are comparable for the previ-
ously obtained but at higher magnets volume, which is also
coherent with literature. On the other hand, the first opti-
mal multi-material model has larger reluctant torque due
to optimal current supply in the q-axis.

5 Conclusion and outlooks

In this study we proposed a novel multi-material interpo-
lation method to determine the optimal distribution of air,
iron, and magnets for PMSynRM. The interpolation takes
into account magnetization amplitudes and direction, and
a post-processing clustering method is also suggested to
homogenize magnets direction for feasibility constraints.
This study also investigated the use of the four statics posi-
tions method to reduce global computation time. With fur-
ther work, an exhaustive comparison with other interpola-
tion schemes will be considered, and the extension to mul-
tiobjective optimization under gradient-based methods.

A Nitsche-mortaring reformulation

Several methods exist to consider the movement in elec-
trical motors, such as the Moving Band (MB) technique
described in [8], even when using high order elements in
the MB, this method remains less accurate than the mortar
element method [4]. A variant of the mortar method, the
Nitsche method, is chosen to take into account the rota-
tion [16]. Let us define the adapted operator KNM

θ
to fit the

new formulation

KNM
θ (X,u,η ,v,µ) = ∑

i∈{rot,stat}

(∫
Ωi

ν(ρθ
ν , |∇ui|)∇ui ·∇vi

)

−
∫

Ωrot

fν(1−ρ
θ
ν )

Mmax fM(|~M|)
|~M|

Rθ

[
−Mθ

y
Mθ

x

]
·∇vrot

+ ∑
i∈{rot,stat}

(
−
∫

∂Ωi

ν0
∂ui

∂n
(vi−µ)−

∫
∂Ωi

ν0
∂vi

∂n
(ui−η) )

+
α p2

h

∫
∂Ωi

(ui−η)(vi−µ)

)
,

(A.1)

where (u,η ,v,µ) ∈ V ×W ×V ×W and V,W are defined
as{

V = {v = (vrot ,vstat) ∈ H1(Ωrot)×H1(Ωstat), v = 0 on ∂Ω},
W = {w ∈ L2(∂Ωrot ∩∂Ωstat)}.

(A.2)

Here, α > 0 is a stabilization parameter which we chose
as α = 160, p = 1 denotes the polynomial degree of the
finite element discretization and h the diameter of the
largest element of the mesh. Moreover, recall the implicit
dependence of ~M = (Mθ

x ,M
θ
y )
> on the density variables

ρMθ
x
,ρMθ

y
(3.5), (3.14).

Hence the state equation (3.6) can be formulated as

Find (uθ ,ηθ ) ∈V ×W, KNM
θ (Xρ ,uθ ,ηθ ,v,µ) =

∫
Ωstat

j(θ)vdx for all (v,µ) ∈V ×W.

(A.3)

In a similar manner, the adjoint equation (3.22) can be re-
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Table 6: Starting designs

Starting Design

Rotor

Table 7: Designs Iron-Air

Final filtered design

Rotor

fν , f 10 % 20 % 40 %

T̄ [N.m] 0.20897 0.83351 1.1129

11



Table 8: Designs Magnet-Air-Iron

Final filtered designs

Rotor

fν ,mag
7.5 % 15 % 30 %

T̄ [N.m] 1.2830 1.4729 1.9000

T̄Kmeans[N.m] 1.2646 1.4469 1.8671

Table 9: Designs Iron-Air-Magnets

Final Design

Rotor

fv,mag 10% 20% Not bounded

T̄ [N.m] 1.2710 1.4513 2.0484

T̄Kmeans [N.m] 1.1097 1.3863 1.6422
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defined as

Find (wθ ,µθ ) ∈V ×W :
∂KNM

θ

∂ (u,η)
(X,uθ ,ηθ ,wθ ,µθ )(û, η̂) =−1

4
∂T
∂u

(uθ )(û)

(A.4)

for all (û, η̂) ∈V ×W for each θ ∈ {0, π

12 ,
π

6 ,
π

4 }.
The corresponding Lagrangian reads

L̃ (X,u,η ,v,µ) := L(X,u)+ ∑
θ∈{0, π

12 ,
π

6 ,
π
4 }

KNM
θ (X,uθ ,ηθ ,vθ ,µθ )−

∫
Ωstat

j(θ)vθ ,

(A.5)

and its gradient is given by

∂L̃

∂X
(X,u,η ,v,µ) =

 ∑
θ∈{0, π

12 ,
π

6 ,
π
4 }

∂KNM
θ

∂X
(X,uθ ,ηθ ,vθ ,µθ )−

1
4

∂Tθ

∂X


+

∂ψ(hv, f (X),γ f ,µ)

∂X
+

∂ψ(hv,mag(X),γmag,µ)

∂X
.

(A.6)

References

[1] P. Akiki, M. Hage-Hassan, M. Bensetti, J.-C. Van-
nier, D. Prieto, and M. McClelland. Axial ferrite-
magnet-assisted synchronous reluctance motor. In
2018 XIII International Conference on Electrical
Machines (ICEM), pages 583–589, 2018.

[2] S. Amstutz, C. Dapogny, and À. Ferrer. A consis-
tent relaxation of optimal design problems for cou-
pling shape and topological derivatives. Numerische
Mathematik, 140(1):35–94, 3 2018.

[3] S. Amstutz and P. Gangl. Topological derivative
for the nonlinear magnetostatic problem. Electron.
Trans. Numer. Anal., 51:169–218, 2019.

[4] O. Antunes, J. Bastos, N. Sadowski, A. Razek,
L. Santandrea, F. Bouillault, and F. Rapetti. Using
hierarchic interpolation with mortar element method
for electrical machines analysis. IEEE Transactions
on Magnetics, 41(5):1472–1475, 2005.

[5] N. Bianchi, L. Alberti, M. Popescu, and T. Miller.
MMF Harmonics Effect on the Embedded FE-
Analytical Computation of PM Motors. In Confer-
ence Record - IAS Annual Meeting (IEEE Industry
Applications Society), pages 1544 – 1551, 2007.

[6] J. S. Choi and J. Yoo. Optimal design method for
magnetization directions of a permanent magnet ar-
ray. Journal of Magnetism and Magnetic Materials,
322(15):2145–2151, 2010.

[7] J. S. Choi, J. Yoo, S. Nishiwaki, and K. Izui. Opti-
mization of Magnetization Directions in a 3-D Mag-
netic Structure. IEEE Transactions on Magnetics,
46(6):1603–1606, 2010.

[8] B. Davat, Z. Ren, and M. Lajoie-Mazenc. The move-
ment in field modeling. IEEE Transactions on Mag-
netics, 21(6):2296–2298, 1985.

[9] A. Ferrer. Simp-all: A generalized simp method
based on the topological derivative concept. Interna-
tional Journal for Numerical Methods in Engineer-
ing, 120(3):361–381, 2019.

[10] C. Fong. Analytical methods for squaring the disc,
2019.

[11] P. Gangl, S. Köthe, C. Mellak, A. Cesarano, and
A. Mütze. Multi-objective free-form shape op-
timization of a synchronous reluctance machine.
arXiv:2010.10117 [cs, math], 10 2020. arXiv:
2010.10117.

[12] P. Gangl, K. Sturm, M. Neunteufel, and J. Schöberl.
Fully and Semi-Automated Shape Differentiation
in NGSolve. arXiv:2004.06783 [math], 10 2020.
arXiv: 2004.06783.

[13] H. Garcke, C. Hecht, M. Hinze, and C. Kahle. Nu-
merical Approximation of Phase Field Based Shape
and Topology Optimization for Fluids. SIAM J. Sci.
Comput., 37(4):A1846–A1871, 1 2015.

[14] F. Guo, M. Salameh, M. Krishnamurthy, and I. P.
Brown. Multimaterial Magneto-Structural Topology
Optimization of Wound Field Synchronous Machine
Rotors. IEEE Transactions on Industry Applications,
56(4):3656–3667, 2020.

[15] H. Heidari, A. Rassõlkin, A. Kallaste, T. Vaimann,
E. Andriushchenko, A. Belahcen, and D. V. Lu-
kichev. A Review of Synchronous Reluctance Motor-
Drive Advancements. Sustainability, 13(2):729, 1
2021.

[16] K. Hollaus, D. Feldengut, J. Schoeberl, M. Wabro,
and D. Omeragic. Nitsche-type Mortaring for
Maxwell’s Equations. PIERS 2010 Cambridge -
Progress in Electromagnetics Research Symposium,
Proceedings, 2010.

[17] T. Ishikawa, P. Xie, and N. Kurita. Topology Op-
timization of Rotor Structure in Permanent Magnet
Synchronous Motors Considering Ease of Manufac-
turing. IEEJ Journal IA, 4(4):469–475, 2015.

[18] J. Kim, K. H. Sun, W. Kim, and J. E. Kim. Mag-
netic torque maximization in a camera shutter mod-
ule by the topology optimization. J Mech Sci Tech-
nol, 24(12):2511–2517, 12 2010.

13



[19] B. S. Lazarov and O. Sigmund. Filters in topology
optimization based on Helmholtz-type differential
equations. Int. J. Numer. Meth. Engng., 86(6):765–
781, 5 2011.

[20] J. Lee, E. M. Dede, and T. Nomura. Simul-
taneous Design Optimization of Permanent Mag-
net, Coils, and Ferromagnetic Material in Actua-
tors. IEEE Transactions on Magnetics, 47(12):4712–
4716, 2011.

[21] D. Lukáš. An Integration of Optimal Topology and
Shape Design for Magnetostatics. In A. M. Anile,
G. Alì, and G. Mascali, editors, Scientific Computing
in Electrical Engineering, pages 227–232, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[22] J. MacQueen and others. Some methods for classi-
fication and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA, 1967. Issue: 14.

[23] S. S. Maroufian and P. Pillay. PM assisted syn-
chronous reluctance machine design using AlNiCo
magnets. In 2017 IEEE International Electric Ma-
chines and Drives Conference (IEMDC), pages 1–6,
Miami, FL, USA, 5 2017. IEEE.

[24] A. Marrocco. Analyse numérique de prob-
lèmes d’électrotechnique. Ann. Sc. Math. Québec,
1(2):271–296, 1977.

[25] C. Mellak, K. Krischan, and A. Muetze. Synchronous
Reluctance Machines as Drives for Rotary Anode X-
Ray Tubes-A Feasibility Study. In 2018 XIII Inter-
national Conference on Electrical Machines (ICEM),
pages 2613–2618, Alexandroupoli, 9 2018. IEEE.

[26] P. Monk and others. Finite element methods for
Maxwell’s equations. Oxford University Press, 2003.

[27] J. Nocedal and S. J. Wright, editors. Penalty, Barrier,
and Augmented Lagrangian Methods, pages 488–
525. Springer New York, New York, NY, 1999.

[28] A. S. Nunes, L. Daniel, M. Hage-Hassan, and
M. Domenjoud. Modeling of the magnetic be-
havior of permanent magnets including ageing ef-
fects. Journal of Magnetism and Magnetic Materials,
512:166930, 10 2020.

[29] M. Risticevic, D. Iles, and A. Moeckel. Design
of an interior permanent magnet synchronous motor
supported by the topology optimization algorithm.
In 2016 International Symposium on Power Elec-
tronics, Electrical Drives, Automation and Motion
(SPEEDAM), pages 221–225, Capri, Italy, 6 2016.
IEEE.

[30] N. Sadowski, Y. Lefevre, M. Lajoie-Mazenc, and
J. Cros. Finite element torque calculation in electri-
cal machines while considering the movement. IEEE
Trans. Magn., 28(2):1410–1413, 3 1992.

[31] S. Sanogo and F. Messine. Topology optimization in
electromagnetism using SIMP method: Issues of ma-
terial interpolation schemes. COMPEL, 37(6):2138–
2157, 11 2018.

[32] J. Schöberl. C++11 Implementation of Finite Ele-
ments in NGSolve. Technical report, Institute for
Analysis and Scientific Computing, 9 2014.

[33] O. Sigmund. A 99 line topology optimization code
written in Matlab. Structural and Multidisciplinary
Optimization, 21, 2001.

[34] A. Vagati, G. Franceschini, I. Marongiu, and
G. Troglia. Design criteria of high performance syn-
chronous reluctance motors. In Conference Record of
the 1992 IEEE Industry Applications Society Annual
Meeting, pages 66–73 vol.1, 1992.

[35] F. Wang, B. S. Lazarov, and O. Sigmund. On projec-
tion methods, convergence and robust formulations
in topology optimization. Structural and Multidisci-
plinary Optimization, 43(6):767–784, 6 2011.

[36] S. Wang, D. Youn, H. Moon, and J. Kang. Topology
optimization of electromagnetic systems considering
magnetization direction. Magnetics, IEEE Transac-
tions on, 41:1808 – 1811, 2005.

[37] W. Zuo and K. Saitou. Multi-material topology op-
timization using ordered SIMP interpolation. Struct
Multidisc Optim, 55(2):477–491, 2 2017.

14



Erschienene Preprints ab Nummer 2020/1

2020/1 D. Pacheco, T. Müller, O. Steinbach, G. Brenn: A mixed finite element formulation
for generalised Newtonian fluid flows with appropriate natural outflow boundary
conditions

2020/2 U. Langer, O. Steinbach, F. Tröltzsch, H. Yang: Unstructured space-time finite
element methods for optimal sparse control of parabolic equations

2020/3 D.R.Q. Pacheco, R. Schussnig, O. Steinbach, T.-P. Fries: A fully consistent equal-
order finite element method for incompressible flow problems

2020/4 U. Langer, O. Steinbach, F. Tröltzsch, H. Yang: Unstructured space-time finite
element methods for optimal control of parabolic equations

2020/5 P. Gangl, K. Sturm, M. Neunteufel, J. Schöberl: Fully and Semi-Automated Shape
Differentiation in NGSolve

2020/6 U. Langer, O. Steinbach, F. Tröltzsch, H. Yang: Space-time finite element discretiza-
tion of parabolic optimal control problems with energy regularization

2020/7 G. Of, R. Watschinger: Complexity analysis of a fast directional matrix-vector mul-
tiplication

2020/8 P. Gangl, K. Sturm: Topological derivative for PDEs on surfaces
2020/9 D. R. Q. Pacheco, O. Steinbach: A continuous finite element framework for the

pressure Poisson equation allowing non-Newtonian and compressible flow behaviour
2020/10 S. Kurz, S. Schöps, G. Unger, F. Wolf: Solving Maxwell’s Eigenvalue Problem via

Isogeometric Boundary Elements and a Contour Integral Method
2020/11 U. Langer, M. Schanz, O. Steinbach, W. L. Wendland (eds.): 18th Workshop on Fast

Boundary Element Methods in Industrial Applications , Book of Abstracts
2020/12 P. Gangl, S. Köthe, C. Mellak, A. Cesarano, A. Mütze: Multi-objective free-form

shape optimization of a synchronous reluctance machine
2021/1 O. Steinbach, M. Zank: A generalized inf-sup stable variational formulation for the

wave equation
2021/2 U. Langer, O. Steinbach, H. Yang: Robust discretization and solvers for elliptic

optimal control problems with energy regularization
2021/3 R. Löscher, O. Steinbach, M. Zank: Numerical results for an unconditionally stable

space-time finite element method for the wave equation
2021/4 O. Steinbach, P. Gaulhofer: On space-time finite element domain decomposition

methods for the heat equation
2021/5 D. R. Q. Pacheco, O. Steinbach: Space-time finite element tearing and interconnect-

ing domain decomposition methods
2021/6 U. Langer, O. Steinbach, F. Tröltzsch, H. Yang: Space-time finite element methods

for the initial temperature reconstruction
2021/7 J. Zapletal, R. Watschinger, G. Of, M. Merta: Semi-analytic integration for a parallel

space-time boundary element method modeling the heat equation
2021/8 R. Watschinger, G. Of: An integration by parts formula for the bilinear form of the

hypersingular boundary integral operator for the transient heat equation in three
spatial dimensions

2021/9 O. Steinbach, C. Urzua-Torres: A new approach to space-time boundary integral
equations for the wave equation

2021/10 O. Steinbach, C. Urzua-Torres, M. Zank: Towards coercive boundary element meth-
ods for the wave equation

2021/11 R. Watschinger, M. Merta, G. Of, J. Zapletal: A parallel fast multipole method for
a space-time boundary element method for the heat equation


