
Technische Universität Graz

Adjoint sampling methods
for electromagnetic scattering

H. Egger, M. Hanke, C. Schneider, J. Schöberl, S. Zaglmayr
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ADJOINT BASED SAMPLING METHODS FOR
ELECTROMAGNETIC SCATTERING

H. EGGER∗, M. HANKE†, C. SCHNEIDER†, J. SCHÖBERL‡, AND S. ZAGLMAYR∗

Abstract. In this paper we investigate the efficient realization of sampling
methods, based on solutions of certain adjoint problems. This adjoint ap-
proach does not require the explicit knowledge of a Green’s function for the
background medium, and allows to sample for all points and all dipole direc-
tions simultaneously; thus several limitations of standard sampling methods
are relieved. A detailed derivation of the adjoint approach is presented for two
electromagnetic model problems, but the framework can be applied to a much
wider class of problems. We also discuss a relation of the adjoint sampling
method to standard backprojection algorithms, and present numerical tests
that illustrate the efficiency of the adjoint approach.

1. Introduction

Electromagnetic prospection deals with the determination of electric or magnetic
inhomogeneities in a known background medium. Typical problems are the localiza-
tion of conducting objects from scattered electromagnetic waves, or the reconstruc-
tion of conductivity or permittivity distributions inside a body from measurements
of electro-static or -quasistatic fields. Such problems arise in many applications
ranging from the detection of buried landmines or the identification of airplanes
by radar, to medical imaging and nondestructive testing. For details and further
applications, we refer to [6, 1].

In this paper, we consider two model problems, namely the scattering of time
harmonic electromagnetic waves from perfectly conducting objects, and the ef-
fect of paramagnetic inclusions on magnetostatic fields. The corresponding inverse
problems then consist of determining the areas of the inclusions from near field
measurements of the electromagnetic fields. In principle, these nonlinear ill-posed
problems can be solved by standard methods, like nonlinear Tikhonov regulariza-
tion. However, such black-box approaches typically require heavy computations,
and therefore linearizations or other approximations are frequently used in order
to facilitate fast reconstructions. The resulting schemes then naturally suffer from
these approximations, and therefore have a limited range of applicability.

An alternative class of methods, established over the past years for a variety of
problems, are linear sampling and probe methods, cf., e.g., [18, 14, 22], and the
references therein. These methods allow to test whether a point or a region belongs
to a scattering object, without the need to iteratively solve forward problems for
different parameter constellations. Therefore, sampling and probe methods enable
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rapid reconstructions, at least in principle. The methods we have in mind are based
on range criteria of the following form

z ∈ D, if and only if gz,p ∈ R(L).

Here, the operator L stems from a factorization of the measurement operator [17,
10], and D denotes the support of the scatterer. The test functions gz,p are related
to a fundamental solution or a Green’s function for the underlying problem with
singularity at a point z, and typically depend on an additional parameter (vector) p,
which can be chosen in order to improve the results. The test, whether gz,p is in the
range of the compact operator L, can be realized by Picard’s criterion: If {σj , uj , vj}
denotes the singular system of L, then

gz,p ∈ R(L), if and only if
∑

j

σ−2
j |(gz,p, vj)|2 < ∞.

The efficient implementation of a range test thus requires (i) a singular value de-
composition of the operator L, which is directly related to the measurements and
can be computed easily; (ii) the fast evaluation of the scalar products (gz,p, vj),
which requires the explicit knowledge of a fundamental solution for the problem
under investigation. We would like to remark that other methods, e.g., the MUSIC
algorithm [9, 16], or the linear sampling method [5], also rely on the knowledge and
fast evaluation of Green’s functions or fundamental solutions [7, 14].

In this paper, we present an alternative evaluation formula for the integrals
(gz,p, vj), which does not require an explicit representation of a Green’s function.
Related approaches based on reciprocity gap functionals have been investigated in
connection with linear sampling methods [3, 4, 2]. The main result of our paper
will be an identity of the form

(gz,p, vj) = p · Vj(z),(1)

where the functions Vj can be computed directly from the singular vectors vj of
the measurement operator. This formula does not require the knowledge of the
Green’s function; moreover, the dependence on the parameter p is made explicit,
which allows to compute the range criterion easily for all parameter vectors p and
test points z, as soon as the functions Vj have been computed. We will present this
adjoint approach in detail for two electromagnetic model problems. The approach,
however, is applicable to a much wider class of problems, e.g., electrical impedance
or optical tomography.

The outline of this paper is as follows: In Section 2, we investigate the elec-
tromagnetic scattering from a perfect conductor. After introducing the relevant
equations, we recall some details of the factorization method and the linear sam-
pling method, and then derive an identity of the form (1). In Section 3, we consider
a magnetostatic model problem, for which the factorization method provides some-
what stronger results, and again derive an identity of the form (1). In Section
4, we establish a connection between the factorization method and backprojection
methods, i.e., we show that in some cases, the linear sampling method can be inter-
preted as a nonlinear backprojection algorithm. This implies that linear sampling
and backprojection methods can easily be integrated into one algorithm, which
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then provides additional quantitative information, that is usually missing in sam-
pling methods. We conclude with presenting results of numerical experiments that
illustrate the efficiency of the adjoint approach.

2. Electromagnetic scattering from a perfect conductor

The propagation of time harmonic electromagnetic fields generated by a current
source JS in a medium with constant permeability µ0 is described by Maxwell’s
equations

curl E = iωµ0H, curlH = (σ − iωε)E + JS .(2)

Here, E and H are the complex amplitudes of the electric and magnetic fields,
respectively, the functions ε and σ denote the permittivity and conductivity distri-
butions of the background medium, and ω is the angular frequency. If the current
source JS is locally supported, and the medium is homogeneous outside a suffi-
ciently large ball (i.e., ε(x) = ε0, σ(x) = 0 for |x| ≥ R′), then the electromagnetic
fields satisfy the Silver-Müller radiation condition

lim
|x|→∞

(
√

µ0H× x− |x|
√

ε0E) = 0.(3)

For a numerical realization, it is often advantageous to restrict the computational
domain to a finite set, in which case the radiation condition has to be replaced by an
appropriate boundary condition. Below we will only consider problems restricted
to a large ball Ω = {x ∈ R3 : |x| < R} with R > R′, and we replace the radiation
condition by an absorbing boundary condition [19, Section 1.2]

ν ×H +
√

ε0/µ0(ν × E)× ν = 0 on ∂Ω,(4)

where ν denotes the outward pointing unit normal vector on ∂Ω. Instead of this
local boundary condition, one might as well consider nonlocal, exact boundary
conditions based on Calderon maps [19, Section 9.4].

For the rest of this section, we shall further assume that the electric parameters
ε and σ of the background medium are piecewise constant, i.e., we assume that
ε = ε′ and σ = σ′ in some smooth domain Ω′ ⊂ Ω, and ε = ε0 and σ = 0 outside
Ω′; here, ε′, ε0 > 0, and σ′ ≥ 0 are known constants. This assumption simplifies
our presentation, as we can refer to results from previous work. The main results
presented in this paper however hold for more general material parameters. Finally,
we assume that the source currents JS are supported on a smooth open surface
S ⊂ Ω \Ω′, and thus the material is homogeneous in the vicinity of S. For a sketch
of the geometry, we refer to Figure 1 in Section 5.

2.1. Governing equations and basic notation. Let the smooth domain D ⊂ Ω′
be the support of a perfectly conducting inclusion. By the usual scaling E =

√
ε0E ,

JS = iωµ0
√

ε0JS , and after elimination of the magnetic field H, the scaled electric
field can be seen to satisfy

curl curlE − k2n(x)E = JS in Ω \D,(5)
ν × E = 0 on ∂D,(6)

where the (positive) wave number k is defined by k2 = ε0µ0ω2, and the function
n(x) = ε−1

0 [iσ(x)/ω+ ε(x)] denotes the refractive index of the background. Accord-
ing to our remarks above, the system (5)–(6) is complemented by the absorbing
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boundary condition

ν × curlE + ik(ν × E)× ν = 0 on ∂Ω(7)

Note that the case Ω = R3 can be considered similarly, if (7) is replaced by a
radiation condition or a non-local boundary condition [19]. Unique solvability of the
boundary value problem (5)–(7) follows with standard arguments, cf. [19, Section 4].
The following result also holds for the special case D = ∅.

Lemma 1. For any JS ∈ TH−1/2(div, S) ∩ TL2(S), the problem (5)–(7) has a
unique solution E ∈ H(curl,Ω \D) that depends continuously on the data JS.

Here, TL2(S) = {v ∈ L2(S) : ν · v = 0} denotes the space of square inte-
grable tangential vector fields, and TH−1/2(div, S) := {v ∈ TH−1/2(S) : divS v ∈
H−1/2(S)} is the space of functions with well-defined surface divergence; H(curl,Ω) =
{v ∈ L2(Ω) : curl v ∈ L2(Ω)} denotes the space of functions with square integrable
curl. For functions v ∈ H(curl,Ω) the trace of the tangential components (ν×v)×ν
belongs to TH−1/2(curl, ∂Ω), which is the dual space of TH−1/2(div, ∂Ω). For de-
tails regarding these function spaces we refer to [19].

2.2. The scattering problem. As usual we decompose the total field E = Ei +
Es, where the incident field Ei satisfies (5) with D = ∅ and (7). By linearity of the
equations, the scattered field Es = E − Ei then solves the system

curl curlEs − k2n(x)Es = 0 in Ω \D,(8)

ν × Es = −ν × Ei on ∂D,(9)
ν × curlEs + ik(ν × Es)× ν = 0 on ∂Ω.(10)

Existence and uniqueness of the solutions E and Ei follow directly from Lemma 1,
and the result for Es follows because Es = E−Ei. Note that since n was assumed
to be piecewise constant, the incident field Ei has analytic components in Ω′ [6,
Section 6], and consequently ν ×Ei|∂D is well-defined and smooth. With the same
arguments, it follows that Es has analytic components in Ω\Ω′, and the tangential
trace (ν ×Es|S)× ν is a well-defined and smooth function in TL2(S). This allows
to define the measurement operator

M : TH−1/2(div, S) ∩ TL2(S) → TL2(S), JS +→ (ν × Es|S)× ν,(11)

that assigns to any surface excitation current JS the corresponding tangential com-
ponent of Es|S of the scattered electric field. The following properties of the mea-
surement operator are direct consequences of the definition of the fields Ei and
Es.

Lemma 2. The operator M can be extended to a compact linear operator from
TL2(S) to TL2(S). Moreover, there holds the decomposition M = LG, where
G : TL2(S) → TH−1/2(div, ∂D) and L : TH−1/2(div, ∂D) → TL2(S) are linear
compact operators defined by G : JS +→ ν × Ei|∂D, and L : −ν × Ei|∂D +→ (ν ×
Es|S)× ν.

Proof. The result was proven in [12] for the magnetic field formulation and un-
bounded domains, but the methods of proof carry over verbatim to the case con-
sidered here. The proof relies on a-priori bounds for solutions Ei and Es and the
continuity of the tangential trace map. The compactness of the operator follows
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from the regularity of the scattered field; since the medium is assumed to be piece-
wise homogeneous, we know (cf. [6, Section 6]) that Es has analytic components in
the vicinity of S, and thus (ν × Es|S)× ν is a smooth function. The compactness
then follows by compact embedding. !
2.3. A linear sampling method. Let G(x, z) denote the Green’s tensor corre-
sponding to the problem (5)–(7) with D = ∅, i.e., for any p ∈ R3 the function
Gz,p = G(·, z)p is a solution of

curl curlGz,p − k2n(x)Gz,p = δzp in Ω,(12)
ν × curlGz,p + ik(ν ×Gz,p)× ν = 0 on ∂Ω,(13)

in the sense of distributions. The first equation implies that for any sufficiently
smooth E satisfying curl curlE − k2n(x)E = 0 in some ball Br(z) = {x ∈ R3 :
|x− z| < r} ⊂ Ω there holds

p · E(z) = (ν × curlGz,p, E)∂Br(z) − (Gz,p, ν × curlE)∂Br(z).(14)

Here and below, (u, v)S =
∫

S u·vds denotes the L2 scalar product of complex vector
fields. Formula (14) follows directly from the definition of the Green’s function and
integration by parts, cf. [19, Thm. 3.31].

Remark 1. For n ≡ 1 in Ω, the representation (14) is just a consequence of the
Stratton-Chu formula, cf. [19, Theorem 12.2]. In this case, the function Gz,p can
be constructed explicitly: Let

Φ(x, z) =
1
4π

eik|x−z|

|x− z| , x -= z,

denote the fundamental solution of the Helmholtz equation, and

G̃(x, z) = Φ(x, z)I + k−2∇z∇zΦ(x, z)

be the dyadic Green’s function for Maxwell’s equations [19, Section 12]. Denote
G̃z,p = G̃(x, z)p, then the solution Gz,p of (12)–(13) is given by Gz,p = G̃z,p + Vz,p

where Vz,p solves (8) in Ω with boundary conditions

ν × curlVz,p + ik(ν × Vz,p)× ν = −ν × curl G̃z,p − ik(ν × G̃z,p)× ν

on ∂Ω. This implies that Gz,p satisfies the homogeneous boundary condition (13).

The following result has been derived in slightly different form in [12] for the
magnetic field formulation; see also [13] for corresponding results for the electric
field formulation.

Lemma 3. Let us define the test function gz,p := (ν × Gz,p|S) × ν. Then a point
z belongs to D, if and only if, gz,p ∈ R(L), with L as defined in Lemma 2.

Proof. The proof is similar to the one in [13]; the boundary condition (13) is used
to take care of the bounded domain. !

Together with the factorization stated in Lemma 2, we obtain the following
(weak) characterization of the inclusion.

Corollary 1. Let p -= 0. If gz,p ∈ R(M), then z ∈ D.

Since the operator M is compact, it has a singular value decomposition, and the
range criterion is equivalent to the Picard criterion. This yields the following for-
mulation of the range test, which can efficiently be used in numerical computations.
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Corollary 2. Let {σj , uj , vj} denote a singular system of M and p -= 0. Then the
condition

∑
j σ−2

j |(gz,p, vj)S |2 < ∞ implies z ∈ D.

Remark 2. The arguments used in Lemma 2 and Corollaries 1 and 2 hold for more
general inhomogeneous background media. However, the numerical realization of a
sampling method based on Corollary 2 requires the knowledge of a Green’s function,
or at least a fundamental solution of the underlying problem. Note that other
sampling methods typically require the knowledge of fundamental solutions as well,
cf. [7]. In effect, this restricts the applicability of many sampling methods to the
case of homogeneous or sufficiently simple background media.

2.4. An adjoint method. The sampling method discussed in the previous section
relies on the efficient computation of the integrals (gz,p, vj)S . In practice, this
evaluation has to be carried out for many points z and possibly several dipole
directions p. In the following, we present a method that allows to compute these
integrals without the use of an explicit representation of the Green’s function.

For a given vj ∈ TH−1/2(div, S) ∩ TL2(S), let Vj be the solution of the adjoint
problem

curl curlVj − k2n(x)Vj = vj in Ω(15)
ν × curlVj − ik(ν × Vj)× ν = 0 on ∂Ω.(16)

Existence and uniqueness of a solution Vj ∈ H(curl,Ω) of (15)–(16) is again pro-
vided by Lemma 1. The following identity then follows readily by utilizing the
definitions of the Green’s function and the solution of the adjoint problem.

Theorem 1. Let gz,p be defined as above. Then for any vj ∈ TH−1/2(div, S) ∩
TL2(S) and z ∈ Ω \ S there holds

(gz,p, vj)S = p · Vj(z),

where Vj denotes the solution of (15)–(16).

Proof. Let Br(z) = {x ∈ Ω : |x−z| ≤ r} be the ball around z with sufficiently small
radius r > 0, and denote the outer normal of Br(z) by ν again. Using (15)–(16)
and gz,p = (ν ×Gz,p|S)× ν, we find that

(gz,p, vj)S = (curlGz,p, curlVj)Ω\Br(z) − (Gz,p, k
2n(x)Vj)Ω\Br(z)

− (Gz,p, ν × curlVj)∂Br(z) + (Gz,p, ik(ν × Vj)× ν)∂Ω

= −(Gz,p, ν × curlVj)∂Br(z) + (ν × curlGz,p, Vj)∂Br(z) = p · Vj(z),

where the last equality follows from the Stratton-Chu formula (14). !

The alternative representation of the integrals provides the basis for a formula-
tion of the sampling method without reference to the Green’s function.

Corollary 3. Let {σj , uj , vj} denote a singular system of M , and let Vj be defined
by (15)–(16). Then gz,p ∈ R(M), if and only if,

∑
j σ−2

j |p · Vj(z)|2 < ∞.

Let us emphasize that this alternative formulation enables us to realize the range
test for all points in the computational domain at once, as soon as the solutions
Vj to the adjoint problems have been computed. Moreover, because of the explicit
dependence on the direction p, we can easily compute the integrals (gz,p, vj)S for
several directions.
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Corollary 4. Let gz,p and Vj be defined as above. Then
∫

|p|=1
|(gz,p, vj)S |2dp =

4π

3
|Vj(z)|2.

Remark 3. The statement of Corollary 3 does not change, if the terms |p · Vj(z)|
are replaced by |Vj(z)|. Note, however, that for the electromagnetic scattering
problem, the sampling method of Corollary 1, respectively its equivalent formula-
tion of Corollary 3, allow only to characterize a subset D′ ⊂ D of the inclusion.
Thus the use of several dipole directions p and the separate evaluation of the range
criterion for different directions may increase the area of D′, and thus provide a
better estimate of the scatterer.

3. A scattering problem in magnetostatics

Let us now turn to a second model problem, for which the factorization method
provides a sharper characterization of the domain occupied by the inclusion. Since
the magnetic field is now static, all function spaces and inner products will be real
in the following.

3.1. Problem formulation. For ω = 0, Maxwell’s equations describing the mag-
netic field in a linear medium with inhomogeneous permeability µ read

curlH = JS , div(µH) = 0.

The second equation allows to represent the magnetic induction µH by a vector
potential, which we denote by E again, i.e., µH = curl E . Since adding a gradient
field ∇φ to the vector potential does not change the magnetic field H, one can
require E to satisfy additional gauging conditions. In the following, we utilize a
Coulomb gauge, which forces E to be orthogonal to gradient fields, i.e., E has
to be weakly divergence free. As a consequence of the first equation, JS has to
be (weakly) divergence free as well. After rescaling E = µ−1

0 E and by rewriting
JS = JS , we obtain

curl γr curlE = JS , div E = 0 in Ω,(17)

where γr denotes the relative reluctivity defined by γr = µ0/µ. As in the previous
section, let Ω be a sufficiently large ball, and assume that γr is constant near ∂Ω.
We then complement (17) by homogeneous boundary conditions

ν × curlE = 0, ν · E = 0 on ∂Ω.(18)

For ease of presentation we assume in the following that the background medium
has constant reluctivity, i.e., γr ≡ γ0 in Ω \D for some constant γ0. Moreover, we
assume that the paramagnetic inclusion has a strictly smaller constant reluctivity,
i.e., γr ≡ γ1 in D with 0 < γ1 < γ0. As in the previous section, we suppose that
the excitation current JS is supported on a smooth surface S ⊂ Ω \D; for a sketch
of the geometry see again Figure 1 in Section 5.

The unique solvability of the equations describing the magnetostatic vector po-
tential follows from standard arguments, cf. [8, Chapter IX].

Lemma 4. For any divergence free surface current JS ∈ TL2
0(S) = {v ∈ TL2(S) :∫

S v · ∇φ ds = 0 for all φ ∈ C∞(Ω)}, problem (17)–(18) has a unique solution
E ∈ H(curl,Ω) depending continuously on JS.
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The total field E = Ei + Es can again be decomposed into an incident field Ei

that solves (17)–(18) with γr replaced by γ0, and a scattered field Es, which is due
to the inhomogeneity, and satisfies

curl γr curlEs = curl(γ0 − γr) curlEi, div Es = 0 in Ω(19)
ν × curlEs = 0, ν · Es = 0 on ∂Ω.(20)

Unique solvability of this problem follows from Lemma 4 applied to E and Ei and
the representation Es = E−Ei. Note that for γr = γ0, the scattered field vanishes.

3.2. The measurement operator and the associated factorization method.
In the following, we define a measurement operator, which associates to any diver-
gence free current JS the corresponding trace of the tangential components of the
scattered field.

Remark 4. For the results below, we have to factor out tangential traces of gradient
fields, i.e., functions in N(S) = closure{(ν × ∇φ|S) × ν : φ ∈ C∞(Ω)}, where the
closure is taken with respect to TL2(S). We thus consider any v ∈ TL2(S) as
representant of the equivalence class v + N(S) in the factor space TL2(S)/N(S).
This space can be identified with the dual space TL2

0(S)′ of the space of divergence
free tangential fields. For details, we refer to [11, 13].

Lemma 5. Let us define the current-to-measurement map

M̃ : TL2
0(S) → TL2

0(S)′, JS +→ (ν × Es|S)× ν,

and let ι : TL2
0(S) → TL2

0(S)′ denote the Riesz isomorphism from TL2
0(S) into its

dual. Then the measurement operator M := ι−1M̃ is a compact, selfadjoint linear
operator on TL2

0(S).

Proof. Apart from the self-adjointness, the result was proven in [13] for the operator
ιM ι−1 = M̃ ι−1 in case of an unbounded domain. The methods of proof, however,
also apply for the situation considered here. To see that M is selfadjoint, let J1,
J2 ∈ TL2

0(S), and observe that

(M̃J1, J2)S = (γr curlEs
1 , curlEs

2)Ω = (J1, M̃J2)S ,

which then implies the self-adjointness of M . !

Remark 5. The restriction of the measurements (ν×Es|S)×ν to the factor space
TL2

0(S)′, and the subsequent identification of this space with TL2
0(S) via the Riesz

isomorphism amounts to a projection of the measurements onto the divergence free
subspace TL2

0(S). Details concerning this projection are given in the next section.

For a characterization of the domain occupied by the inclusion, we utilize func-
tions related to the Green’s tensor for the magnetostatic equation. Here we define
Gz,p as solution of the problem

curl γ0 curlGz,p = curl(δzp), div Gz,p = 0 in Ω(21)
ν × curlGz,p = 0, ν ·Gz,p = 0 on ∂Ω(22)

in the sense of distributions.
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Remark 6. For the case of a homogeneous background medium, e.g., γ0 ≡ 1, the
Green’s function Gz,p can be constructed explicitly. Let us define

G̃z,p(x) =
1
4π

curl
p

|x− z| ,

and let Vz,p solve (17) with JS = 0 and boundary conditions

ν × curlVz,p = −ν × curl G̃z,p, ν · Vz,p = −ν · G̃z,p on ∂Ω.

Then Gz,p = G̃z,p + Vz,p satisfies (21)–(22). The arguments below are, however,
also valid for more general background media.

The following result, which is the core of the factorization method considered
here, has been proven in [13] for the case of unbounded domains. The corresponding
result for bounded domains follows with the same arguments.

Lemma 6. For some p ∈ R3, let us define the test function gz,p := (ν×Gz,p|S)×ν.
Then ι−1gz,p ∈ R(|M |1/2), if and only if z ∈ D.

The compactness of the measurement operator and the Picard criterion yield the
following range test, which can efficiently be used in computations.

Corollary 5. Let {λj , vj} denote an eigensystem of M , and let gz,p be defined as
above. Then z ∈ D, if and only if

∑
j |λj |−1|(gz,p, vj)S |2 < ∞.

Proof. Since vj ∈ TL2
0(S), we have (gz,p, vj)S = (ι−1gz,p, vj)S , where we identified

the function gz,p with the corresponding distribution. The result then follows from
Lemma 6. !

An application of Corollary 5 requires the efficient evaluation of the inner prod-
ucts (gz,p, vj)S , which in turn rely on the availability of an explicit representation
of the Green’s function, or, at least, a fundamental solution for the problem un-
der investigation. Like for the electromagnetic scattering problem considered in the
previous section, one can compute these integrals without knowledge of the Green’s
function, by utilizing solutions to certain adjoint problems.

3.3. Adjoint formulation. Let us consider the following adjoint problem, where
vj is a divergence free tangential current source.

curl γ0 curlVj = vj , div Vj = 0, in Ω(23)
ν × curlVj = 0, ν · Vj = 0 on ∂Ω.(24)

The unique solvability of this problem for any vj ∈ TL2
0(S) follows from Lemma 4.

For the solutions Vj of this adjoint problem, the following identities can be derived.

Theorem 2. For given vj ∈ TL2
0(S), let Vj denote the solution of (23)–(24). Then

for every p ∈ R3 we have

(gz,p, vj)S = p · curlVj(z),

where gz,p was defined as above. Moreover, there holds the identity
∫

|p|=1
|(gz,p, vj)S |2dp =

4π

3
| curlVj(z)|2.
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Proof. By the definition of Vj and gz,p, we obtain

(gz,p, vj)S = −(γ0Gz,p, ν × curlVj)∂Br(z) + (γ0ν × curlGz,p, Vj)∂Br(z)

= p · curlVj(z),

where the last equality follows from the definition of Gz,p and integration by parts as
in (14). The second identity then follows from integration over the unit sphere. !

As a direct consequence of this result, we obtain the following equivalent formu-
lation of the range test, which does not rely on an explicit representation of the
Green’s function.

Corollary 6. Let {λj , vj} denote an eigensystem of the measurement operator M ,
and let Vj be defined by (23)–(24). Then a point z belongs to the inclusion D, if
and only if

∑
j |λj |−1| curlVj(z)|2 < ∞.

Remark 7. The results of this section can be generalized to non-homogeneous
background. However, we feel that already for the case of a homogeneous back-
ground, the alternative range test of Corollary 6 has many advantages, as it allows
to sample efficiently for all points z and all directions p, as soon as the solutions Vj

to the adjoint problems are available.

4. A connection to linear backprojection

In this section, we would like to highlight a connection of the adjoint formulation
of the sampling method discussed in the previous section to linear backprojection,
which can be considered to be a first step of nonlinear Landweber iteration or other
iterative regularization methods, cf., e.g., [15].

4.1. Forward operators. Let us consider the magnetostatic scattering problem
with constant background medium, i.e., γr ≡ γ0 in Ω\D, and strictly smaller reluc-
tivity γr ≡ γ1 in D, as discussed in the previous section. Recall that the scattered
field Es

J(γr) corresponding to a source J and the relative reluctivity distribution γr

satisfies

curl γr curlEs
J = curl(γ0 − γr) curlEi

J , div Es
J = 0 in Ω,

ν × curlEs
J = 0, ν · Es

J = 0 in ∂Ω,

where the incident field Ei
J is given by

curl γ0 curlEi
J = J, div Ei

J = 0 in Ω(25)

ν × curlEi
J = 0, ν · Ei

J = 0 in ∂Ω.(26)

We define a nonlinear operator F̃J : D(F ) → TL2
0(S)′ that maps the reluctivity

distribution to the (equivalence class of) measurements (ν ×Es
J |S)× ν of the scat-

tered field corresponding to a specific source current J . Like in Lemma 5, we then
define the forward operator FJ := ι−1F̃J , where ι : TL2

0(S) → TL2
0(S)′ is the Riesz

isomorphism.

Remark 8. For u ∈ TL2(S), we define the restriction Π : u +→ u − ∇Sφ, where
∇S denotes the surface gradient, and φ ∈ H1(S) solves the variational problem

(∇Sφ,∇Sψ)S = (u,∇Sψ)S for all ψ ∈ C∞(Ω).
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It follows that Πu ∈ TL2
0(S) for any u ∈ TL2

0(S); see also Remark 5. We then have
FJ(γ) = Π

(
(ν×Es

j |S)×ν
)
, and obtain FJ(γ) = MJ , where M is the measurement

operator defined in Lemma 5.

The derivative of the forward operator F at γ0 in direction h is given by F ′J(γ0)h =
Π

(
(ν ×W s

J |S)× ν
)
, where W s

J is the solution of

curl γ0 curlW s
J = − curlh curlEi

J , div W s
J = 0 in Ω,(27)

ν × curlW s
J = 0, ν ·W s

J = 0 in ∂Ω.(28)

The action of the adjoint of the derivative operator on some element r ∈ TL2
0(S)

is then given by

(F ′J(γ0)∗r, h)L2(Ω) = (r, F ′J(γ0)h)TL2(S) = (r, (ν ×W s
J )× ν)TL2(S)

= (γ0 curlEi
r, curlW s

J )L2(Ω) = −(h curlEi
r, curlEi

J)L2(Ω),

where Ei
r is the solution of (25)–(26) with J replaced by r, and the adjoint was

taken with respect to the scalar products of L2(Ω) and TL2(S). For r ∈ TL2
0(S),

this yields the representation

F ′J(γ0)∗r = − curlEi
r · curlEi

J .

4.2. Multiple excitations. As a next step, we generalize these definitions to the
case of multiple excitations: Let M = M(γr) denote the measurement operator
defined above corresponding to a reluctivity distribution γr. We then define the
full forward operator F : γr → M(γr) by F (γr)J := FJ(γr) for all J ∈ TL2

0(S).
The measurement space L(TL2

0(S), TL2
0(S)) can be equipped with the Hilbert

Schmidt norm defined by ‖|A‖| =
√

((A, A)), where

((A, B)) =
∑

i,j

(Avj , Bvi)TL2(S),

and {λj , vj} denotes an eigensystem of M(γr). The action of the adjoint operator
F ′(γ0)∗ on some element R in the measurement space is then defined by

(F ′(γ0)∗R, h)L2(Ω) = ((R,F ′(γ0)h)) =
∑

i,j

(Rvj , (ν ×Wvi |S)× ν)TL2(S)

= −
∑

i,j

(h curlUj , curlVi)L2(Ω),

where Wvi is defined by (27)–(28) with J replaced by vi, and the functions Uj and
Vi solve (25)–(26) with J = Rvj and J = vi, respectively. Thus the action of the
adjoint derivative is given by

F ′(γ0)∗R = −
∑

i,j

curlUj · curlVi.(29)

4.3. Linearization and backprojection. For solving the nonlinear inverse prob-
lem F (γr) = M , we consider a formal linearization of the forward operator

F (γr) = F (γ0) + F ′(γ0)(γr − γ0) + o(‖γr − γ0‖),
and we consider the linearized problem F ′(γ0)(γr−γ0) = M (note that F (γ0) = 0)
instead of the nonlinear problem. Applying a simple linear backprojection yields
as a first approximation

γr ∼ γ0 + F ′(γ0)∗M,
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thus we have to apply the adjoint of the derivative operator only to the special
element R = M . Utilizing the fact, that vj are the eigenvectors of M , we obtain
Rvj = Mvj = λjvj , and thus Uj = λjVj . Inserting this into (29), we obtain the
representation

F ′(γ0)∗M = −
∑

i,j

λj curlVj · curlVi(30)

for the update of the linear backprojection method.

Remark 9. Note that the functions Vj are just the solutions of the adjoint problems
(23)–(24), which were already used for the adjoint implementation of the factoriza-
tion method. By replacing λj curlVj in (30) by −δij |λj |−1 curlVj , we recover the
sampling method of Corollary 6. In any case, the functions Vj that are required for
the implementation of the range test of the sampling method can be re-used for the
application of the backprojection, hence both methods can be implemented easily
within one algorithm.

5. Numerical tests

Let us discuss the implementation of the adjoint sampling method for the scat-
tering from a perfect conductor investigated in Section 2. For our numerical tests,
we use the following geometry: Ω = B5(0) is the ball around the origin with radius
5. For the refractive index of the background medium, we choose n(x) = n′ = 2 + i
in Ω′ = B1(0) and n(x) ≡ 1 in Ω \ Ω′, and the wavenumber is set to k = 1. The
scatterer D is contained in the cube [−0.5, 0.5]2 × [0.3, 0.5] ⊂ Ω′, as depicted in
Figure 1. Finally, the excitations and measurements are located at the surface
S = ∂B1.1(0) ∩ {z ≥ 0}.

5.1. Discretization by finite elements. For the discretization of the electric field
equations, we use an H(curl)-conforming finite element method with high order
Nedelec finite elements [21, 24] consisting of piecewise polynomials with maximal
degree 5. The space TL2(S) of excitation currents and measurements is approx-
imated by the lowest order Nedelec space [20] restricted to the surface S. The
measurement matrix then corresponds to a projection of the measurement opera-
tor (11) onto this finite element trace space, i.e., one source/detector is associated
with each edge of the mesh on the measurement surface S. In our numerical test
example, the total number of degrees of freedom of a finite element solution is
nd = 202.570 and the number of independent sources/detectors is ns = 171. All
computations were implemented in the open-source finite element software NET-
GEN/NgSolve [23].

A discretization of the problems (5)–(7) yields linear systems of the form

A(D)Ej = Jj , j = 1, . . . , ns,(31)

where A(D) refers to the system matrix in the presence of a perfectly conducting
scatterer located in D, and ns denotes the number of source (and detector) loca-
tions. The scattered fields defined by (8)–(10) with excitations Ji are then given
by Es

j = Ej − Ei
j , and the entries of the measurement matrix are obtained by

evaluation of the tangential traces of Es
j at the measurement surface.

Since the problems (31) have to be solved many times for different right hand
sides, we utilized a sparse factorization of the nd × nd dimensional matrix A(D);
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the solutions of the systems (31) can then be computed very fast. The required
computation times for this calibration procedure are listed in Table 1.

Table 1. Computation times for the sparse factorizations of the
system matrices A(D) using PARDISO [25], and the solution of
(31) for 171 right hand sides. All computations were performed on
a standard dual-core desktop PC.

assembling factorization solution total
21s 416s 148s 585s

5.2. Adjoint sampling method. After computing a singular value decomposition
{σj , uj , vj} of the ns× ns dimensional measurement matrix, we have to determine
the adjoint solutions Vj of (15)–(16), which are defined by linear systems of the
form

A(∅)Vj = vj , j = 1, . . . , ns.

Since the singular vectors vj =
∑

i vjkJk can be expressed via the sources Jk,
we obtain Vj =

∑
i vjkEi

k, where Ei
k denotes the solution of the forward problem

without scatterer and current source Jk. Thus no further pde problems have to be
solved here to find the adjoint solutions Vj . Even with real data, only the ns pde
problems for determining Ei

k, k = 1, . . . , ns have to be solved, which can be done
independently of the data in an initialization step.

For a quantitative evaluation of the range criterion of Corollary 3, we use the
following numerical range test: For z on a uniform grid and some 0 < n ≤ ns, we
compute

sn(z) = C(z)−1
n∑

j=1

σ−2
j |Vj(z)|2,

where the factors C(z) :=
( ∑ns

j=1 |Vj(z)|2
)

= 4π
3

∫
S2 ‖gz,p‖2Sdp are intended to

facilitate a comparison of the resulting numbers for different sampling points with
each other. In our numerical example, we chose the truncation index n by σn+1 <
δσ1 ≤ σn with δ = 10−6, which in this case amounts to n = 96. In general, the
truncation level δ will depend on the noise of the data. Alternatively, one could
replace the denominator σ2

j by σ2
j + α for some α > 0 and set n = ns; cf. [14] for

different implementations of numerical range tests. The isolines and isosurfaces of
the function cn(z) = log(sn(z)) are displayed in Figure 1.

5.3. Discrete identity. At the end of this section, we would like to make a remark
concerning the adjoint approach on the discrete level. The identities of Theorem 1
and 2 also hold for discretizations in the following sense: Let Vh ⊂ H(curl,Ω)
denote a conforming finite element space, and let Gh

z,p denote the discrete Green’s
function corresponding to (12)–(13), i.e., Gh

z,p ∈ Vh such that

(curlGh
z,p, curl vh)Ω − k2(n(x) Gh

z,p, vh)Ω + ik(Gh
z,p, (ν × vh)× ν)∂Ω = p · vh(z)

for all vh ∈ Vh. Since the test functions vh are in general not continuous on Ω, the
evaluation points z have to be restricted to the interior of the individual elements.
Accordingly, we define V h

j as the solutions of the discrete adjoint problems

(V h
j , vh)Ω − k2(n(x) V h

j , vh)Ω − ik(V h
j , (ν × vh)× ν)∂Ω = (vj , vh)S
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Ω
Ω′

SD

Figure 1. Top-left: Sketch of the geometry. Bottom-left: Iso-
lines of the reconstruction cn and the true object at the plane
{(x, y, 0.4)}. Right: Isosurface of the reconstruction cn (red) and
the domain D of the scattering object (blue).

for all vh ∈ Vh. If gh
z,p = (ν ×Gh

z,p|S)× ν, then there holds

(gh
z,p, vj)S = p · V h

j (z).

Note that this identity does not hold in general, if gh
z,p is defined differently, e.g.,

by L2-projection of gz,p onto the finite element (trace) space.

6. Conclusion

In this manuscript, we have proposed an alternative formulation of linear sam-
pling methods, that does not require the explicit knowledge of a Green’s function
or a fundamental solution for the underlying problem. The resulting algorithms
allow to sample for all test points z in the domain and several dipole directions p
simultaneously. The solutions of the adjoint problems, that are required for the
implementation, are also used in the evaluation of forward operators and back-
projection algorithms. Therefore, the adjoint sampling methods can be integrated
easily within existing code for nonlinear inverse problems. Let us finally remark
that the adjoint approach is not restricted to the electromagnetic model problems
discussed in this paper, but can easily be generalized to a wide range of problems,
e.g., in acoustic scattering, or electrical impedance tomography. Moreover, similar
techniques can also be utilized for the implementation of other sampling and probe
methods.
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