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Abstract

We propose and analyse preconditioners for the Schur complement of a mixed
finite element discretisation of the biharmonic Dirichlet boundary value problem.
Since the system matrix is spectrally equivalent to the piecewise defined Sobolev space

H̃
−1/2
pw (Γ) we may use either an appropriate boundary element approximation of local

single layer boundary integral operators, or we consider a multilevel preconditioner
where the resulting spectral condition number is optimal up to a logarithmic factor.
Numerical experiments illustrate the obtained theoretical results.

1 Introduction

In this paper we consider preconditioners for the Schur complement matrix of a mixed
finite element discretization of the biharmonic Dirichlet boundary value problem, which
has numerous applications in solid and fluid mechanics. The mixed formulation of the
biharmonic Dirichlet problem was first given in [3], see also [7] for a further discussion of
the stability and error analysis.

First results on iterative methods for the biharmonic Dirichlet problem in a mixed
formulation were given for Uzawa–type methods in [11], and for a multilevel algorithm
in [19] where convergence was shown when assuming H3–regularity for the solution. A
variable V –cycled multigrid approach was considered for piecewise quadratic or higher
order shape functions in [8]. Further, a W–cycled multigrid method was analyzed where
the number of smoothing steps has to be sufficiently large. An arbitrary black box multigrid
approach for the biharmonic equation was considered in [14]. In [1] the authors consider a
preconditioned conjugate gradient method for solving the Schur complement system when
eliminating the dual variable. Afterwards, in [20] it is shown that the Schur complement
matrix is spectrally equivalent to a mesh depending norm, and the related preconditioner
is realized by a special factorization.
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A different approach for the iterative solution of the mixed finite element formulation
is based on the elimination of all interior degrees of freedom. This requires the solution
of two Dirichlet boundary value problems for the Poisson equation, and results in a Schur
complement system to find the Dirichlet datum of the dual variable [3, 7]. Since the Schur
complement matrix implies an equivalent norm in the piecewise defined fractional Sobolev
space H̃

−1/2
pw (Γ), several choices of suitable preconditioners are available. First we consider

a representation of this particular Sobolev norm by using locally defined single layer bound-
ary integral operators. In fact, this approach corresponds to an additive Schwarz method
[9, 15]. Although this method results in a constant bound of the spectral condition number,
its realization requires the inversion of a block diagonal matrix including a coarse problem.
Instead one may use multilevel representations of fractional Sobolev norms [2, 5, 16, 17],
i.e. of H−1/2(Γ), which results in an almost optimal preconditioner, where the bound of
the spectral condition number is constant up to a logarithmic term. A different choice
is the use of the Galerkin discretization of the stabilized hypersingular boundary integral
operator [24].

This paper is organized as follows: In Sect. 2 we recall the mixed finite element dis-
cretization of the biharmonic Dirichlet boundary value problem and derive the Schur com-
plement system for which we aim to construct a preconditioner. In Theorem 2.4 we present
the basic spectral equivalence inequalities for the biharmonic Schur complement. In Sect. 3
we discuss the construction of different preconditioners. First we consider the representa-
tion of the piecewise defined fractional Sobolev norm in H̃

−1/2
pw (Γ) by using locally defined

single layer boundary integral operators and provide related bounds for the spectral con-
dition number. As an alternative strategy we consider a multilevel preconditioner which
is spectrally equivalent to the norm in H−1/2(Γ), i.e. we prove related norm equivalence
inequalities which correspond to an additive Schwarz method. In Sect. 4 we present some
numerical experiments for two– and three–dimensional model problems which illustrate
the obtained theoretical results. We end the paper by some conclusions and final remarks
in Sect. 5.

2 Biharmonic Dirichlet boundary value problem

Let Ω ⊂ R
n (n = 2, 3) be a bounded Lipschitz domain with a piecewise smooth boundary

Γ = ∂Ω, and let f ∈ L2(Ω) be given. The first boundary value problem of the biharmonic
equation is then given by

∆2p(x) = f(x) for x ∈ Ω, p(x) =
∂

∂nx

p(x) = 0 for x ∈ Γ. (2.1)

For a mixed formulation of (2.1) we introduce an additional unknown u = −∆p. Integration
by parts leads, for all test functions v ∈ H1(Ω), and by using the boundary condition
∂np = 0 on Γ, to

0 =

∫

Ω

u(x)v(x) dx+

∫

Ω

[∆p(x)]v(x) dx =

∫

Ω

u(x)v(x) dx−

∫

Ω

∇p(x) · ∇v(x) dx .
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For the remaining equation, i.e. for −∆u = f , we obtain analogously
∫

Ω

f(x)q(x) dx =

∫

Ω

[−∆u(x)]q(x) dx =

∫

Ω

∇u(x) · ∇q(x) dx for all q ∈ H1
0 (Ω).

Hence we conclude the following mixed variational formulation of the boundary value
problem (2.1): Find (u, p) ∈ H1(Ω)×H1

0 (Ω) such that
∫

Ω

u(x)v(x) dx −

∫

Ω

∇p(x) · ∇v(x) dx = 0,
∫

Ω

∇u(x) · ∇q(x) dx =

∫

Ω

f(x)q(x) dx
(2.2)

is satisfied for all (v, q) ∈ H1(Ω)×H1
0 (Ω). The existence and uniqueness of the solution of

problem (2.2) is discussed, e.g., in [3].
For the finite element discretization of the variational formulation (2.2) we consider a

globally quasi–uniform admissible finite element mesh Th, and introduce the finite dimen-
sional subspaces

Vh = span{ϕi}
nI+nC
i=1 ⊂ H1(Ω), Qh = span{ϕi}

nI
i=1 ⊂ H1

0 (Ω), (2.3)

both of piecewise linear and globally continuous shape functions ϕi. Note that nI = dimQh

denotes the number of interior degrees of freedom, while nC is the number of degrees
of freedom on the boundary with dimVh = nI + nC . We introduce the mass matrix
Mh ∈ R

(nI+nC)×(nI+nC), the stiffness matrixKh ∈ R
nI×(nI+nC), and the load vector f ∈ R

nI ,
given by

Mh[j, i] =

∫

Ω

ϕi(x)ϕj(x) dx, Kh[ℓ, i] =

∫

Ω

∇ϕi(x) · ∇ϕℓ(x) dx, f [ℓ] =

∫

Ω

f(x)ϕℓ(x) dx

for all i, j = 1, . . . , nI + nC , and ℓ = 1, . . . , nI . Further, we make use of the isomorphism
(uh, ph) ∈ Vh × Qh ↔ (u, p) ∈ R

nI+nC × R
nI . The linear system of algebraic equations,

which is equivalent to the Galerkin variational formulation of (2.2), is then given by
(
Mh −K⊤

h

Kh

)(
u
p

)
=

(
0
f

)
.

According to the interior and boundary degrees of freedom we can decompose the vector
u = (uI , uC)

⊤ and thus rewrite the linear system, by using KCI = K⊤
IC ∈ R

nI×nC , as


MII MCI −KII

MIC MCC −KIC

KII KCI





uI
uC
p


 =



0
0
f


 ,

or, by a simple reordering of the variables, as


MII −KII MCI

KII KCI

MIC −KIC MCC





uI
p
uC


 =



0
f
0


 . (2.4)
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By using
uI = K−1

II [f −KCIuC ]

and

p = K−1
II [MIIuI +MCIuC ] = K−1

II MIIK
−1
II f −K−1

II MIIK
−1
II KCIuC +K−1

II MCIuC

we obtain the Schur complement system

[
MCC −MICK

−1
II KCI −KICK

−1
II MCI +KICK

−1
II MIIK

−1
II KCI

]
uC (2.5)

=
[
KICK

−1
II MII −MIC

]
K−1

II f.

In order to use a preconditioned conjugate gradient scheme for an iterative solution of the
linear system (2.5) we need to have a preconditioner CTh

for the Schur complement matrix

Th =MCC −MICK
−1
II KCI −KICK

−1
II MCI +KICK

−1
II MIIK

−1
II KCI . (2.6)

For all vC ∈ R
nC we rewrite the induced bilinear form as

(ThvC , vC) = (MCCvC , vC)− 2 (MICK
−1
II KCIvC , vC) + (MIIK

−1
II KCIvC , K

−1
II KCIvC)

= (MCCvC , vC) + 2 (MICvI , vC) + (MIIvI , vI)

with
vI := −K−1

II KCIvC ∈ R
nI .

By using the isomorphism v = (vI , vC)
⊤ ∈ R

nI+nC ↔ vh ∈ Vh we finally obtain

(ThvC , vC) = (Mhv, v) =

∫

Ω

[vh(x)]
2 dx = ‖vh‖

2
L2(Ω). (2.7)

Note that vh ∈ Vh is the discrete harmonic extension of vh|Γ ↔ vC ∈ R
nC which is the

unique solution of the variational problem

∫

Ω

∇vh(x) · ∇qh(x) dx = 0 for all qh ∈ Qh.

Since the boundary Γ = ∂Ω was assumed to be piecewise smooth, and thus is decomposable
into J ∈ N smooth parts, we have

Γ =

J⋃

i=1

Γi, Γi ∩ Γj = ∅ for all i 6= j, i, j ∈ {1, . . . , J}.

Further, we define the Sobolev space of piecewise smooth functions

H1/2
pw (Γ) =

{
v ∈ L2(Γ) : v|Γi

∈ H1/2(Γi), i = 1, . . . , J
}
, H1/2(Γ) ⊂ H1/2

pw (Γ), (2.8)
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with the corresponding norm

‖v‖
H

1/2
pw (Γ)

=

(
J∑

i=1

‖v|Γi
‖2H1/2(Γi)

)1/2

.

Recall that for any smooth and open part Γi ⊂ Γ we have

H̃1/2(Γi) =
{
v = ṽ|Γi

: ṽ ∈ H1/2(Γ), supp ṽ ⊂ Γi

}

with the norm
‖v‖H̃1/2(Γi)

= ‖ṽ‖H1/2(Γ),

and for the dual spaces

H−1/2(Γi) = [H̃1/2(Γi)]
∗, H̃−1/2(Γi) = [H1/2(Γi)]

∗.

Moreover, the dual space of (2.8) is then given by

H̃−1/2
pw (Γ) =

J∏

i=1

H̃−1/2(Γi)

with the norm

‖ψ‖
H̃

−1/2
pw (Γ)

=

(
J∑

i=1

‖ψ|Γi
‖2
H̃−1/2(Γi)

)1/2

.

In fact we have H̃
−1/2
pw (Γ) ⊂ H−1/2(Γ), i.e. for all ψ ∈ H̃

−1/2
pw (Γ) there holds

‖ψ‖H−1/2(Γ) = sup
06=v∈H1/2(Γ)

〈ψ, v〉Γ
‖v‖H1/2(Γ)

≤ sup
06=v∈H

1/2
pw (Γ)

J∑
i=1

〈ψ|Γi
, v|Γi

〉Γi

‖v‖
H

1/2
pw (Γ)

≤ ‖ψ‖
H̃

−1/2
pw (Γ)

. (2.9)

For a further discussion and generalization for s ∈ R of the above Sobolev spaces we refer
to [6, 12, 23], and the references therein. The following statement is a consequence of the
Neumann trace theorem, see, e.g., [10, Theorem 4.2.1, p. 178] in the case of C1,1 domains;
or [18, p. 53].

Lemma 2.1 Let Ω ⊂ R
n, n = 2, 3, be a bounded Lipschitz domain with piecewise smooth

boundary Γ = ∂Ω. For all v ∈ H2(Ω) we have ∂nv ∈ H
1/2
pw (Γ) and

‖∂nv‖H1/2
pw (Γ)

≤ cT ‖v‖H2(Ω).

Vice versa, for each λ ∈ H
1/2
pw (Γ) there exists a v ∈ H2(Ω) with ∂nv = λ on Γ and

‖v‖H2(Ω) ≤ cIT ‖λ‖
H

1/2
pw (Γ)

.
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An extended version, see [6, Theorem I.1.6, p. 9], of the second statement of Lemma 2.1 is
given as follows, where we enforce zero Dirichlet boundary conditions.

Lemma 2.2 Let Ω ⊂ R
n, n = 2, 3, be a bounded Lipschitz domain with piecewise smooth

boundary Γ. For each λ ∈ H
1/2
pw (Γ) there exists a v ∈ H2(Ω) ∩H1

0 (Ω) with ∂nv = λ and

‖v‖H2(Ω) ≤ c̃IT ‖λ‖
H

1/2
pw (Γ)

.

The above results are required to prove the following theorem.

Theorem 2.3 Let Ω ⊂ R
n, n = 2, 3, be a convex and bounded Lipschitz domain with

piecewise smooth boundary Γ. For z ∈ H1/2(Γ) let uz ∈ H1(Ω) be the harmonic extension

satisfying

−∆uz(x) = 0 for x ∈ Ω, uz(x) = z(x) for x ∈ Γ.

Then there hold the spectral equivalence inequalities

c1 ‖z‖H̃−1/2
pw (Γ)

≤ ‖uz‖L2(Ω) ≤ c2 ‖z‖H̃−1/2
pw (Γ)

for all z ∈ H1/2(Γ).

Proof. We will first prove the upper estimate ‖uz‖L2(Ω) ≤ c2‖z‖H̃−1/2
pw (Γ)

. For a test function

v ∈ H2(Ω) ∩H1
0 (Ω) we have, since uz ∈ H1(Ω) is the harmonic extension of z ∈ H1/2(Γ),

by applying duality and the Hölder inequality,
∫

Ω

[−∆v(x)]uz(x)dx =

∫

Ω

∇v(x) · ∇uz(x)dx−

∫

Γ

∂

∂nx

v(x)uz(x)dsx

= −

∫

Γ

∂

∂nx

v(x)z(x)dsx = −
J∑

i=1

〈∂nv|Γi
, z|Γi

〉Γi

≤
J∑

i=1

‖∂nv|Γi
‖H1/2(Γi)‖z|Γi

‖H̃−1/2(Γi)
≤ ‖∂nv‖H1/2

pw (Γ)
‖z‖

H̃
−1/2
pw (Γ)

.

Let wz ∈ H1
0 (Ω) be the unique solution of the Dirichlet problem

−∆wz(x) = uz(x) for x ∈ Ω, wz(x) = 0 for x ∈ Γ.

Since Ω is assumed to be convex, we have wz ∈ H2(Ω) ∩H1
0 (Ω), which satisfies

‖wz‖H2(Ω) ≤ c ‖uz‖L2(Ω).

Thus, with Lemma 2.1 we conclude

‖uz‖
2
L2(Ω) =

∫

Ω

[−∆wz(x)]uz(x)dx = −

∫

Γ

∂

∂nx

wz(x)z(x)dsx

≤ ‖∂nwz‖H1/2
pw (Γ)

‖z‖
H̃

−1/2
pw (Γ)

≤ c ‖wz‖H2(Ω)‖z‖H̃−1/2
pw (Γ)

≤ c2 ‖uz‖L2(Ω)‖z‖H̃−1/2
pw (Γ)

.
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This proves the upper estimate and it remains to show the inequality

c1 ‖z‖H̃−1/2
pw (Γ)

≤ ‖uz‖L2(Ω) for all z ∈ H1/2(Γ).

From Lemma 2.2 we conclude that for any λ ∈ H
1/2
pw (Γ) there exists a v ∈ H2(Ω) ∩H1

0 (Ω)
such that ∂nv = λ and

‖v‖H2(Ω) ≤ c̃IT ‖λ‖
H

1/2
pw (Γ)

.

Hence we find

‖z‖
H̃

−1/2
pw (Γ)

= sup
06=λ∈H

1/2
pw (Γ)

〈z, λ〉Γ
‖λ‖

H
1/2
pw (Γ)

= sup
06=λ∈H

1/2
pw (Γ)

∫

Ω

[∆v(x)]uz(x)dx

‖λ‖
H

1/2
pw (Γ)

≤ sup
06=λ∈H

1/2
pw (Γ)

‖∆v‖L2(Ω)‖uz‖L2(Ω)

‖λ‖
H

1/2
pw (Γ)

≤ c̃IT ‖uz‖L2(Ω),

which completes the proof.

Now we are in a position to state the required spectral equivalence inequalities for the
Schur complement Th. For this we define the finite element trace space

Zh = span{φk}
nC
k=1 := Vh|Γ = span{ϕnI+k|Γ}

nC
k=1 ⊂ H1/2(Γ).

Theorem 2.4 For all zC ∈ R
nC ↔ zh ∈ Zh there hold the spectral equivalence inequalities

(ThzC , zC) ≃ ‖zh‖
2

H̃
−1/2
pw (Γ)

.

Proof. For zh ∈ Zh ↔ zC ∈ R
nC let uzh ∈ H1(Ω) be the harmonic extension for which

we have, by Theorem 2.3,

c1 ‖zh‖H̃−1/2
pw (Γ)

≤ ‖uzh‖L2(Ω) ≤ c2 ‖zh‖H̃−1/2
pw (Γ)

. (2.10)

On the other hand, by defining uI = −K−1
II KCIzC and by setting u = (uI , zC)

⊤ ↔ uzh,h ∈
Vh, which is the discrete harmonic extension of zh, we obtain by using (2.7),

(ThzC , zC) = ‖uzh,h‖
2
L2(Ω).

Since uzh,h ∈ Vh is the standard finite element approximation of uzh ∈ H1(Ω), we have,
by applying the spectral equivalence (2.10), the standard finite element error estimate in
L2(Ω), the continuity of the Dirichlet trace of the harmonic extension uzh ∈ H1(Ω), and
an inverse inequality

‖uzh,h‖L2(Ω) ≤ ‖uzh‖L2(Ω) + ‖uzh,h − uzh‖L2(Ω)

≤ c2 ‖zh‖H̃−1/2
pw (Γ)

+ c3 h ‖uzh‖H1(Ω)

≤ c2 ‖zh‖H̃−1/2
pw (Γ)

+ c4 h ‖zh‖H1/2(Γ)

≤ c2 ‖zh‖H̃−1/2
pw (Γ)

+ c5 ‖zh‖H−1/2(Γ).
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Now the upper estimate follows by using (2.9). To prove the reverse estimate we first
have, by using an inverse inequality, and the bound of the Dirichlet trace of the discrete
harmonic extension uzh,h ∈ Vh ⊂ H1(Ω),

‖uzh,h‖L2(Ω) ≥ c6h ‖uzh,h‖H1(Ω) ≥ c7h ‖zh‖H1/2(Γ) = c7
h‖zh‖H1/2(Γ)

‖zh‖H̃−1/2
pw (Γ)︸ ︷︷ ︸

=:α

‖zh‖H̃−1/2
pw (Γ)

.

On the other hand we conclude, as above,

‖uzh,h‖L2(Ω) ≥ ‖uzh‖L2(Ω) − ‖uzh,h − uzh‖L2(Ω)

≥ c1 ‖zh‖H̃−1/2
pw (Γ)

− c4h ‖zh‖H1/2(Γ) = (c1 − c4α) ‖zh‖H̃−1/2
pw (Γ)

.

In particular we have

‖uzh,h‖L2(Ω) ≥ max{c7α, c1 − αc4} ‖zh‖H̃−1/2
pw (Γ)

,

and by using

min
α>0

max{c7α, c1 − αc4} =
c1c7
c7 + c4

> 0

this concludes the proof.

3 Preconditioning strategies

In this section we discuss two different approaches to construct a preconditioner for the
Schur complement matrix Th as defined in (2.6). The first approach is based on the spectral

equivalence inequalities in H̃
−1/2
pw (Γ), see Theorem 2.4, while the second approach makes

use of additional spectral equivalence inequalities which relates Th to a Sobolev norm in
H−1/2(Γ).

3.1 Boundary integral operator preconditioning

By using Theorem 2.4 the Schur complement matrix Th satisfies the spectral equivalence
inequalities

(ThzC , zC) ≃ ‖zh‖
2

H̃
−1/2
pw (Γ)

=

J∑

i=1

‖zh|Γi
‖2
H̃−1/2(Γi)

for all zC ∈ R
nC ↔ zh ∈ Zh. (3.1)

For the construction of a preconditioning matrix CTh
it is therefore sufficient to find a

computable representation of the local Sobolev norms ‖ · ‖2
H̃−1/2(Γi)

, i = 1, . . . , J , which can

be done by using local boundary integral operators, see, e.g., [10, 23].
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For a given ψi ∈ H̃−1/2(Γi), i = 1, . . . , J , we define the local single layer boundary
integral operator as

(Viψi)(x) =

∫

Γi

U∗(x, y)ψi(y)dsy for x ∈ Γi, (3.2)

where

U∗(x, y) =






−
1

2π
log |x− y| for n = 2,

1

4π

1

|x− y|
for n = 3

is the fundamental solution of the Laplace operator. It turns out that the local single layer
boundary integral operator Vi : H̃

−1/2(Γi) → H1/2(Γi) is bounded and H̃−1/2(Γi)–elliptic,
see, e.g., [13, Theorem 2.4], and hence

‖ψi‖
2
Vi
:= 〈Viψi, ψi〉Γi

≃ ‖ψi‖
2
H̃−1/2(Γi)

(3.3)

defines an equivalent norm in H̃−1/2(Γi), i = 1, . . . , J . Note that for the two–dimensional
case we assume that the length of all Γi is less than 4. By combining the spectral equivalence
inequalities (3.1) and (3.3) we therefore conclude the spectral equivalence inequalities

(ThzC , zC) ≃
J∑

i=1

〈Vizh|Γi
, zh|Γi

〉Γi
=

J∑

i=1

(A⊤
i Vi,hAizC , zC) for all zC ∈ R

nC ↔ zh ∈ Zh.

(3.4)
In (3.4), Vi,h ∈ R

nC,i×nC,i with nC,i = dimZh|Γi
is the Galerkin boundary element matrix

of the local single layer boundary integral operator given as

Vi,h[ℓ, k] = 〈Viφk,i, φℓ,i〉Γi
for all k, ℓ = 1, . . . , nC,i,

and
Zh|Γi

= span{φk,i}
nC,i

k=1

is the localized finite element space, for i = 1, . . . , J . The relation between the global and
local degrees of freedom is described by connectivity matrices Ai ∈ R

nC,i×nC . The spectral
equivalence inequalities (3.4) imply the definition of the preconditioning matrix

CSLP :=

J∑

i=1

A⊤
i Vi,hAi , (3.5)

where the spectral condition number of the preconditioned system,

κ(C−1
SLPTh) ≤ c, (3.6)

is bounded by a constant which is independent of the discretization.
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The application of the preconditioning matrix C−1
SLP requires the solution of a linear sys-

tem, v = C−1
SLPr. Since the preconditioner (3.5) corresponds to an additive Schwarz method

for the discrete single layer boundary integral operator [9, 15], it can be realized by solving
local subproblems which correspond to all the interior degrees of freedom within Γi, and
by solving a coarse Schur complement system which corresponds to all degrees of freedom
along the interfaces. In the particular case of a two–dimensional polygonal bounded domain
the dimension of the coarse system coincides with the number of corner points, which is in
general rather small. The situation can be quite different when considering more general
three–dimensional polyhedral domains. This motivates the use of global preconditioning
strategies such as a multilevel approach wich implies a spectral equivalent preconditioner
in H−1/2(Γ).

3.2 Multilevel preconditioner

For the definition of a global preconditioning matrix CTh
in H−1/2(Γ) we need to have, in

addition to (3.1), the spectral equivalence inequalities

‖zh‖
2

H̃
−1/2
pw (Γ)

≃ ‖zh‖
2
H−1/2(Γ) for all zC ∈ R

nC ↔ zh ∈ Zh.

By using (2.9) we easily conclude

‖zh‖
2
H−1/2(Γ) ≤ ‖zh‖

2

H̃
−1/2
pw (Γ)

for all zC ∈ R
nC ↔ zh ∈ Zh. (3.7)

The proof of the reverse inequality is more involved.

Theorem 3.1 Let Γ = ∪J
i=1Γi be piecewise smooth. Let zh ∈ Zh be a piecewise linear and

continuous function which is defined with respect to some admissible and globally quasi–

uniform boundary element mesh of mesh size h, which is assumed to be sufficiently small.

Then there holds

‖zh‖H̃−1/2
pw (Γ)

≤ c2 J [1− log h] ‖zh‖H−1/2(Γ). (3.8)

Proof. The proof of (3.8) follows the ideas as used for the analysis of the additive Schwarz
method for the single layer boundary integral operator, see, e.g., [9, 15]. For s ∈ (0, 1

2
) and

i = 1, . . . , J we first have, see, e.g., [13, Lemma 2.3],

‖φ‖H̃s(Γi)
≤

c

1/2− s
‖φ‖Hs(Γi) for all φ ∈ Hs(Γi).

By using a duality argument and the inverse inequality we therefore conclude, for ε ∈ (0, 1
2
),

‖zh‖H̃−1/2(Γi)
≤ ‖zh‖H̃−1/2+ε(Γi)

= sup
06=φ∈H1/2−ε(Γi)

〈zh, φ〉Γi

‖φ‖H1/2−ε(Γi)

≤
c

ε
sup

06=φ∈H1/2−ε(Γi)

〈zh, φ〉Γi

‖φ‖H̃1/2−ε(Γi)

=
c

ε
‖zh‖H−1/2+ε(Γi) ≤

c̃

ε
h−ε ‖zh‖H−1/2(Γi) .
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Finally, by choosing ε = −1/ log h ∈ (0, 1
2
), which is satisfied for sufficient small h, we

obtain
‖zh‖H̃−1/2(Γi)

≤ c [1− log h] ‖zh‖H−1/2(Γi).

Now the assertion follows by summing up, and by using again a duality argument,

‖zh‖
2

H̃
−1/2
pw (Γ)

=
J∑

i=1

‖zh‖
2
H̃−1/2(Γi)

≤ c2 [1− log h]2
J∑

i=1

‖zh‖
2
H−1/2(Γi)

≤ c2 [1− log h]2

(
J∑

i=1

‖zh‖H−1/2(Γi)

)2

= c2 [1− log h]2

(
J∑

i=1

sup
06=φi∈H̃1/2(Γi)

〈zh, φi〉Γi

‖φi‖H̃1/2(Γi)

)2

= c2 [1− log h]2
(

sup

φ=
J∑

i=1

φi
‖φi‖H̃1/2(Γi)

, 06=φi∈H̃1/2(Γi)

〈zh, φ〉Γ
)2

≤ c2[1− log h]2
(

sup
φ∈H1/2(Γ), ‖φ‖

H1/2(Γ)
≤J

〈zh, φ〉Γ
)2

≤ c2 J2 [1− log h]2 ‖zh‖
2
H−1/2(Γ).

By combining the spectral equivalence inequalities (3.1) with (3.7) and (3.8) we conclude
the spectral equivalence inequalities

c̃1 ‖zh‖
2
H−1/2(Γ) ≤ (ThzC , zC) ≤ c̃2 J

2 [1− log h]2 ‖zh‖
2
H−1/2(Γ) for all zC ∈ R

nC ↔ zh ∈ Zh.

(3.9)
It remains to find preconditioners which are spectrally equivalent to the discrete norm
in H−1/2(Γ). One possibility is the use of the stabilized discrete hypersingular boundary
integral operator as a preconditioner of opposite order [24]. However, in what follows we
will consider a geometric multilevel operator [2, 17] for piecewise linear and continuous
basis functions on the boundary to represent the norm in H−1/2(Γ). Other choices involve
algebraic or artificial multilevel operators as considered in, e.g., [5, 16, 22].

For the construction of the multilevel preconditioner we consider a sequence of admis-
sible globally quasi–uniform nested finite element meshes {Thi

}i∈N0 of mesh size hi ≃ 2−i.
Let {Vhi

}i∈N0 ⊂ H1(Ω) denote the related sequence of finite element spaces with piecewise
linear continuous basis functions. Then we consider the restrictions on the boundary,

Zi := span{φi
k}

ni
C

k=1 = Vhi|Γ = span{ϕi
nI,i+k|Γ}

ni
C

k=1 ⊂ H1/2(Γ), i ∈ N0.

This results in a sequence of nested spaces of the form

Z0 ⊂ Z1 ⊂ . . . ⊂ ZL = ZhL
⊂ ZL+1 ⊂ . . . ⊂ H1/2(Γ)

11



where L denotes the current level of interest. With respect to the boundary element spaces
Zi, i ∈ N0, of piecewise linear globally continuous shape functions φi

k we introduce, for a
given z ∈ L2(Γ), the L2–projection Qi : L2(Γ) → Zi as the unique solution Qiz ∈ Zi of the
variational problem

〈Qiz, vhi
〉Γ = 〈z, vhi

〉Γ for all vhi
∈ Zi.

In addition we set Q−1 := 0. It turns out, see, e.g., [2, 17, 23], that the multilevel operator

B−1/2 :=

∞∑

i=0

hi(Qi −Qi−1) : H
−1/2(Γ) → H1/2(Γ) (3.10)

defines an equivalent norm in H−1/2(Γ), and that its inverse operator is given by

B−1
−1/2 = B1/2 =

∞∑

i=0

h−1
i (Qi −Qi−1) : H

1/2(Γ) → H−1/2(Γ).

As in [23, Corollary 13.7] we finally conclude that the preconditioner CTh
of the Schur

complement Th is given by
CBPX :=MhL

B−1
hL
MhL

, (3.11)

where

MhL
[ℓ, k] = 〈φL

k , φ
L
ℓ 〉Γ, BhL

[ℓ, k] = 〈B1/2φ
L
k , φ

L
ℓ 〉Γ for k, ℓ = 1, . . . , nL

C

denote the standard mass matrix and the Galerkin matrix of the multilevel operator B1/2.
Moreover, by using the spectral equivalence inequalities (3.9) we conclude the following
bound for the spectral condition number of the preconditioned system,

κ(C−1
BPXTh) ≤ c J2 [1− log h]2 . (3.12)

Note that J depends on the geometry of Ω, but not on the discretization.
For the application v = C−1

BPXr, e.g., within a conjugate gradient scheme, we obtain, as
for the standard BPX multilevel approach [2, 23], the representation

v =

L∑

i=0

αiRiM
−1
hi
R⊤

i r

with coefficients

αi =





1

hL
for i = L,

1

hi
−

1

hi+1
for i = 0, . . . , L− 1,

where Ri : R
nC,i → R

nC,L is the prolongation operator which is related to the nested se-
quence of piecewise linear finite element spaces on the boundary. While for the application
of multilevel preconditioners for (pseudo)differential operators of positive order one can
replace the inverse mass matrices M−1

hi
by its diagonals, this is not possible in the case

of the Schur complement Th which is the Galerkin discretization of a (pseudo)differential
operator of order −1, in particular we have αi < 0 for i = 0, . . . , L− 1. Hence we need to
use the inverse mass matrices M−1

hi
which can be realized at low cost.
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4 Numerical results

For the numerical experiments we consider the biharmonic Dirichlet boundary value prob-
lem (2.1) in the domains Ω = B1/2(0) and Ω = (0, 1

2
)n, both for n = 2, 3. The linear system

(2.5) is solved by a conjugate gradient scheme without (CG) and with (PCG) precondi-
tioning up to a relative error reduction of ε = 10−8. In all following tables we present,
for a sequence of different levels L, the number of required PCG iterations, and the re-
lated numbers nI,L and nC,L of degrees of freedom in the interior and on the boundary,
respectively.

4.1 Example 1

The right–hand side f is chosen such that the exact solution is given by

p(x) =





2−n
n∏

i=1

(cos(2πxi)− 1) for Ω = (0, 1
2
)n,

2n exp

(
n∑

i=1

x2i −
1
4

)−1

for Ω = B1/2(0).

For the two–dimensional test problems we first consider the discrete single layer boundary
integral operator preconditioner (3.5), see Table 1. As expected from the estimate (3.6) we
observe a constant number of PCG iterations for both computational domains. Next we
consider the multilevel preconditioner (3.11), the results are given in Table 1 too. In the
case of the circular domain Ω = B1/2(0) with a smooth boundary Γ = ∂Ω we observe a con-

stant number of PCG iterations since the Sobolev spaces H−1/2(Γ) = H̃
−1/2
pw (Γ) coincide.

In contrast to the circular domain, for the polygonal bounded domain Ω = (0, 1
2
)2 we ob-

serve a slightly increasing number of PCG iterations, which corresponds to the logarithmic
behavior of the spectral condition number bound (3.12).

4.2 Example 2

In this example the right–hand side f is chosen by an arbitrary vector with values in
[−1, 1], generated by rand(). In Table 2 we present iteration numbers for the multilevel
preconditioner (3.11) for the two–dimensional test problems. As in Example 1, we observe
a constant number of PCG iterations for Ω = B1/2(0), while for the square Ω = (0, 1

2
)2 we

obtain a logarithmic factor. This logarithmic behavior of the spectral condition number is
more obvious when considering the three–dimensional test problem with Ω = (0, 1

2
)3, see

Table 3.

5 Conclusions

In this paper we have proposed and analyzed two different preconditioners for the solution
of the Schur complement system (2.4) for the biharmonic Dirichlet boundary value problem.
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Ω = B1/2(0) Ω = (0, 1
2
)2

L nI,L nC,L CSLP CBPX CSLP CBPX

0 1 4 1 1 1 1
1 5 8 5 5 5 5
2 25 16 10 10 7 6
3 113 32 13 12 5 5
4 481 64 12 11 9 9
5 1 985 128 13 13 11 12
6 8 065 256 14 14 11 14
7 32 513 512 13 15 11 14
8 130 561 1 024 13 15 11 15
9 523 265 2 048 12 15 11 15
10 2 095 105 4 096 12 15 11 16

Table 1: PCG iterations for CSLP and CBPX preconditioner, n = 2.

Ω = B1/2(0) Ω = (0, 1
2
)2

L nI,L nC,L CG iter PCG iter CG iter PCG iter

0 1 4 1 1 1 1
1 5 8 3 5 3 5
2 25 16 9 11 9 11
3 113 32 19 15 22 16
4 481 64 25 16 30 18
5 1 985 128 33 17 38 19
6 8 065 256 43 17 49 20
7 32 513 512 53 16 63 21
8 130 561 1 024 70 16 80 22
9 523 265 2 048 88 16 101 23
10 2 095 105 4 096 114 16 128 24

Table 2: Iterations for the multilevel preconditioner CBPX, n = 2.

The application of the Schur complement Th requires to solve two Dirchlet boundary value
problems for the Poisson equation for which standard multigrid and multilevel methods can
be applied. Instead of solving the Schur complement system (2.5) one may also consider
the iterative solution of the coupled linear system (2.4), which in particular also requires
the use of a preconditioner for the Schur complement. For a related discussion, see, e.g.,
[4, 21, 25].

The multilevel preconditioner (3.11) for the Schur complement matrix (2.6) of the
biharmonic Dirichlet boundary value problem is also an important part when considering
preconditioners for the solution of boundary control problems subject to second order

14



Ω = B1/2(0) Ω = (0, 1
2
)2

L nI,L nC,L CG iter PCG iter nI,L nC,L CG iter PCG iter

0 1 18 12 12 1 8 2 2
1 19 66 23 16 9 26 18 15
2 231 258 31 25 91 98 29 24
3 2 255 1 026 43 29 855 386 41 27
4 19 871 4 098 54 30 7 471 1 538 55 30
5 166 719 16 386 71 31 62 559 6 146 72 34

Table 3: Iterations for the multilevel preconditioner CBPX, n = 3.

elliptic partial differential equations. Related results will be published elsewhere.
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[14] M. D. Mihajlović, D. Silvester: A black–box multigrid preconditioner for the bihar-
monic equation. BIT 44 (2004) 151–163.

[15] P. Mund, E. P. Stephan, J. Weiße: Two–level methods for the single layer potential
in R

3. Computing 60 (1998) 243–266.

[16] G. Of: An efficient algebraic preconditioner for a fast multipole boundary element
method. Computing 82 (2008) 139–155.

[17] P. Oswald: Multilevel finite element approximation. Theory and applications. Teub-
ner, Stuttgart, 1994.

[18] C. Pechstein. Finite and boundary element tearing and interconnecting solvers for
multiscale problems. Springer, Berlin, 2013.

[19] P. Peisker: A multilevel algorithm for the biharmonic problem. Numer. Math. 46
(1985) 623–634.

[20] P. Peisker: On the numerical solution of the first biharmonic equation. RAIRO Modél.
Math. Anal. Numér. 22 (1988) 655–676.
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