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Abstract

We consider a kinematic dynamo model in a bounded interior region Ω and in
an insulating exterior region Ωc := R3\Ω. In the so–called direct problem, the
magnetic field B and the electric field E are unknown, and which are driven by
a given incompressible flow field w. After eliminating E, a vector and a scalar
potential ansatz for B in the interior and exterior domains, respectively, are applied,
leading to a coupled interface problem. We apply a finite element approach in the
bounded interior domain Ω, whereas a symmetric boundary element approach in the
unbounded exterior domain Ωc is used. We present results on the well–posedness of
the continuous coupled variational formulation, prove well–posedness and stability of
the semi–discretized and fully discretized schemes, and provide quasi–optimal error
estimates for the fully discretized scheme. Finally we present some first numerical
results.

1 Introduction

Large–scale planetary and stellar magnetic activities are driven by magnetohydrodynamic
dynamo processes in the interior of planets and stars. In the convectively unstable case,
they consist of large–scale global circulations and small–scale turbulent flows. A widely
accepted theory for the generation of large–scale magnetic fields through the effect of small–
scale turbulences in a conducting field is the mean–field dynamo theory [17] which will be
considered here.
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Starting point are the full Maxwell equations

∇× E = − ∂

∂t
B, ∇×H = j +

∂

∂t
D, ∇ ·B = 0, ∇ ·D = %,

where the dielectric displacement D and the magnetic field intensity H are expressed
through the electric field E and the magnetic field B, respectively, by the constitutive
relations

D = εE, H =
1

µ
B

with the magnetic permeability µ and the electric permittivity ε.
If w is a given incompressible flow field, we can write an extended Ohm’s law as

j = σ

(
E + w ×B +

Rf

1 + s|B|2
B

)
,

where σ is the electric conductivity. The nonlinear saturation term is a turbulence mod-
elling term from the mean–field dynamo theory [6, Section 6.2] where the turbulent electro-
motive force E = 〈ŵ × B̂〉 is a key quantity. Here 〈·〉 indicates an average in the dynamo
domain, and ŵ and B̂ denote the fluctuating small–scale velocity and magnetic fields.
Following [4] we consider the α–quenching approximation

E ≈ αB =
Rf

1 + s|B|2
B

with a model–oriented function f , and positive parameters s and R. Moreover, following
[6, Section 2.5] we neglect the Gauss law since the electric charge % is very small, and we
neglect the temporal change of the dielectric displacements. Finally we assume that the
electric conductivity σ and the magnetic permeability µ do not depend on time but satisfy
µ ≥ µmin > 0 and 0 < σmin ≤ σ ≤ σmax in a bounded interior domain Ω. Since the exterior
domain Ωc := R3 \Ω is assumed to be insulating, we have σ = 0 and µ = µ0 is constant in
Ωc. Hence we end up with the coupled problem

∇× E = − ∂

∂t
B, ∇× 1

µ
B = σ

(
E + w ×B +

Rf

1 + s|B|2
B

)
, ∇ ·B = 0 in Ω, (1.1)

and

∇× E = − ∂

∂t
B, ∇× 1

µ0

B = 0, ∇ ·B = 0 in Ωc, (1.2)

together with the transmission conditions

[n× (H× n)]|Γ = 0, [B · n]|Γ = 0 on Γ := ∂Ω, (1.3)

where [·]|Γ denotes the jump of a function across Γ, and n is the exterior normal vector.
Moreover, we have some initial condition B(0) = B0, ∇ ·B0 = 0.
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Let us briefly comment on the literature. The majority of stellar and planetary dynamo
models employs spectral methods with spherical harmonics which are not feasible in the
case of variable data. For bounded domains, the standard approach for the finite element
solution of Maxwell’s system is to use curl conforming elements, e.g., Nédélec elements,
see [2, 3]. Alternatively, a saddle point approach with a (vanishing) pressure like Lagrange
multiplier allows to apply Lagrangian finite elements [4]. In the case of discontinuous data,
an interior penalty approach together with Lagrange finite elements is adressed in [7, 8, 14].
For the full space R3, a usual approach is a coupling of finite element (FEM) or finite
volume (FVM) methods in a bounded domain with boundary element (BEM) methods in
the remaining exterior domain. For a FVM–BEM coupling we refer, e.g., to [12, 24]. The
idea of a symmetric FEM–BEM coupling for the stationary linear Maxwell system can be
found in [13] and [10] which will be used in this paper as well. An hp–adaptive FEM–BEM
coupling is considered in [23]. A comparison of the interior penalty finite element approach
and a FVM–BEM coupling is considered in [9].
In the present paper we consider the coupled problem (1.1)–(1.3) where we first eliminate
the electric field E and apply a vector potential ansatz for the magnetic field B in the
interior domain Ω, and a scalar potential ansatz for B in the exterior domain Ωc. The coup-
ling of both subproblems at the interface is accomplished by using both boundary integral
equations of the exterior Calderón projection where we discuss two different approaches.
Then we analyze the well–posedness of the arising continuous coupled problem which is
formed by a time–dependent nonlinear problem in the interior, and a quasi–stationary
elliptic problem in the exterior domain. For the spatial discretization we first introduce an
approximation of the exterior Dirichlet to Neumann map, and apply lowest order Nédélec
elements for a finite element discretization. For simplicity we only consider an implicit Euler
scheme for the time discretization, but we prove well–posedness of the discrete system
arising within each time step. Finally we present a priori error estimates of the fully
discretized system, and we present some first numerical results.

2 Variational formulation

In this section, we specify the mathematical model and derive a variational formulation
of the coupled problem (1.1)–(1.3). Later on, and following the approach in [13], this
will be the basis of a symmetric coupling of finite element methods (FEM) and boundary
element methods (BEM) in the discrete case. We start by using a vector potential ansatz
to describe solutions of the interior problem (1.1), and a scalar potential ansatz for the
exterior problem (1.2).

3



2.1 Interior problem

In the interior bounded domain Ω we use a vector potential ansatz to describe the magnetic
field B = ∇×A. From (1.1) we then obtain

∇ ·B = ∇ · (∇×A) = 0,
∂

∂t
B +∇× E = ∇×

(
∂

∂t
A + E

)
= 0,

from which we further conclude

E = − ∂

∂t
A−∇φ

for some scalar potential φ. Hence we may introduce the new potential

u := A +

∫ t

0

∇φ ds,

from which we conclude

B = ∇× u, E = − ∂

∂t
u.

Inserting these expressions into the remaining equation of (1.1) we finally obtain the partial
differential equation to be solved

σ(x)
∂

∂t
u(x, t) +∇x ×

1

µ(x)
(∇x × u(x, t)) (2.1)

−σ(x) w(x, t)× (∇x × u(x, t))− σ(x)Rf(x, t)

1 + s |∇x × u(x, t)|2
∇x × u(x, t) = 0.

In order to prove ellipticity of the spatial linear second order partial differential operator in
(2.1) we will use a scaling argument. Let κ ∈ R+ be some parameter to be specified later
in (3.4). We multiply the partial differential equation (2.1) with the nonnegative function
e−κt, apply the product rule, and introduce û(x, t) := e−κtu(x, t) to obtain

σ(x)
∂

∂t
û(x, t) + σ(x)κû(x, t) +∇x ×

1

µ(x)
(∇x × û(x, t)) (2.2)

−σ(x) w(x, t)× (∇x × û(x, t))− σ(x)Rf(x, t)

1 + se2κt |∇x × û(x, t)|2
∇x × û(x, t) = 0.

To derive a variational formulation which is related to (2.2) we first introduce the function
space

H(curl; Ω) :=
{
v ∈ [L2(Ω)]3 | curl v ∈ [L2(Ω)]3

}
with the graph norm

‖v‖2
H(curl; Ω) = ‖v‖2

L2(Ω) + ‖∇ × v‖2
L2(Ω).
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Moreover, the duality pairing between the dual space [H(curl; Ω)]∗ and H(curl; Ω) is de-
noted by 〈·, ·〉, while the inner product in [L2(Ω)]3 is denoted by (·, ·). In addition we use
〈·, ·〉Γ for the duality pairing on Γ. For the treatment of the time dependent partial differ-
ential equation (2.2), we consider the standard vector valued Lebesgue and Sobolev spaces
Lq(0, T ;W ) and H1(0, T ;W ) := W 1,2(0, T ;W ) with an appropriate Banach space W . Mul-
tiplication of the partial differential equation (2.2) with a test function v ∈ H(curl; Ω),
integration over the interior domain Ω, and integration by parts, see, e.g., [1], lead to a
variational formulation to find û ∈ H1(0, T ;H(curl; Ω)) such that for all test functions
v ∈ H(curl; Ω) and almost all t ∈ (0, T ) there holds

0 =

(
σ
∂

∂t
û(t),v

)
+ κ
(
σû(t),v

)
+

(
1

µ
∇× û(t),∇× v

)
−
〈(

1

µ
∇× û(t)

)
× n,v

〉
Γ

−
(
σw(t)× (∇× û(t)),v

)
−
(

σRf(t)

1 + se2κt|∇ × û(t)|2
∇× û(t),v

)
(2.3)

together with the initial condition û(0) = u0, i.e. B0 = curl u0.

2.2 Exterior domain

In the exterior domain Ωc, the partial differential equations (1.2) reduce to the solution of

∇×B = 0, ∇ ·B = 0 in Ωc,

with an appropriate radiation condition. Hence we introduce the scalar potential B = ∇Φ
satisfying

∇×B = ∇×∇Φ = 0, ∇·B = ∇·∇Φ = ∆Φ = 0 in Ωc, Φ(x) = O
( 1

|x|

)
as |x| → ∞.

Any solution of the Laplace equation in the exterior domain Ωc can be described by the
representation formula

Φ(x) = −
∫

Γ

U∗(x, y) [ny · ∇Φ(y)]dsy +

∫
Γ

[ny · ∇yU
∗(x, y)]Φ(y)dsy for x ∈ Ωc, (2.4)

where

U∗(x, y) =
1

4π

1

|x− y|
for x, y ∈ R3, x 6= y,

is the related fundamental solution. From (2.4) we obtain a system of boundary integral
equations which can be written by using the exterior Calderon projection(

Φ

n · ∇Φ

)
=

( 1
2
I +K −V
−D 1

2
I −K ′

)(
Φ

n · ∇Φ

)
(2.5)

where for x ∈ Γ we use the single layer integral operator

(VΨ)(x) =

∫
Γ

U∗(x, y)Ψ(y)dsy, V : H−1/2(Γ)→ H1/2(Γ),
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the double layer integral operator

(KΦ)(x) =

∫
Γ

[ny · ∇yU
∗(x, y)]Φ(y)dsy, K : H1/2(Γ)→ H1/2(Γ),

its adjoint

(K ′Ψ)(x) =

∫
Γ

[nx · ∇xU
∗(x, y)]Ψ(y)dsy, K ′ : H−1/2(Γ)→ H−1/2(Γ),

and the hypersingular boundary integral operator

(DΦ)(x) = −nx · ∇x

∫
Γ

[ny · ∇yU
∗(x, y)]Φ(y)dsy, D : H1/2(Γ)→ H−1/2(Γ).

The mapping properties of the boundary integral operators are well established, see, e.g.,
[5, 11, 16, 22].

2.3 Transmission problem

For the coupling of the interior partial differential equation (1.1) with the exterior problem
(1.2) we need to take care of the transmission conditions (1.3). By using the vector potential
ansatz B = ∇×u in the interior domain Ω and the scalar potential ansatz B = ∇Φ in the
exterior domain Ωc, the transmission conditions (1.3) read

1

µ
(∇× u)× n =

1

µ0

∇Φ× n, (∇× u) · n = ∇Φ · n on Γ. (2.6)

Using the first transmission condition of (2.6), Stokes theorem for surface integrals [19], the
first boundary integral equation in (2.5), and the second transmission condition of (2.6),
we have〈(

1

µ
∇× u

)
× n,v

〉
Γ

=
1

µ0

〈∇Φ× n,v〉Γ =
1

µ0

〈Φ, (∇× v) · n〉Γ

= − 1

µ0

[
〈V (∇Φ · n)− (

1

2
I +K)Φ, (∇× v) · n〉Γ

]
= − 1

µ0

[
〈V [(∇× u) · n]− (

1

2
I +K)Φ, (∇× v) · n〉Γ

]
.

In addition, we consider the second boundary integral equation in (2.5), which together
with the second transmission condition of (2.6) results in a variational formulation to find
Φ ∈ H1/2(Γ) such that

〈DΦ,Ψ〉Γ = −〈(1

2
I +K ′)(∇Φ · n),Ψ〉Γ = −〈(1

2
I +K ′)[(∇× u) · n],Ψ〉Γ
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is satisfied for all Ψ ∈ H1/2(Γ). Since the hypersingular boundary integral operator D
is only semi–elliptic, and since the scalar potential Φ is only unique up to an additive
constant, we consider the stabilized variational formulation to find Φ ∈ H1/2(Γ) such that

〈D̃Φ,Ψ〉Γ := 〈DΦ,Ψ〉Γ + 〈Φ, 1〉Γ〈Ψ, 1〉Γ = −〈(1

2
I +K ′)[(∇× u) · n],Ψ〉Γ (2.7)

is satisfied for all Ψ ∈ H1/2(Γ). Although we have fixed the constant part of the scalar
potential Φ when solving the modified variational problem (2.7), the constant part is
eliminated when applying 1

2
I + K. Since the stabilized hypersingular integral operator

D̃ : H1/2(Γ) → H−1/2(Γ) is H1/2(Γ)–elliptic [20], we obtain for the unique solution of the
variational formulation (2.7) the representation

Φ = −D̃−1(
1

2
I +K ′)[(∇× u) · n].

By using the transformations û := e−κtu and Φ̂ := e−κtΦ we finally obtain for the coupling
term as used in (2.3)〈(

1

µ
∇× û

)
× n,v

〉
Γ

= − 1

µ0

〈[V + (
1

2
I +K)D̃−1(

1

2
I +K ′)]Tnû, Tnv〉Γ (2.8)

where for all v ∈ H(curl; Ω) we have, see [1],

Tnv := (∇× v) · n, ‖Tnv‖H−1/2(Γ) = ‖(∇× v) · n‖H−1/2(Γ) ≤ cT ‖v‖H(curl;Ω). (2.9)

Before we introduce the variational formulation of the transmission problem (1.1)–(1.3)
we will present an alternative boundary integral operator representation for the exterior
problem, which is probably more suitable for the numerical implementation. As before, we
write the interface term as〈(

1

µ
∇× u

)
× n,v

〉
Γ

=
1

µ0

〈Φ, (∇× v) · n〉Γ

where we now keep the first equation of (2.5) separately,

V [n · ∇Φ] = (−1

2
I +K)Φ, i.e. [n · ∇Φ] = V −1(−1

2
I +K)Φ.

Inserting this into the stabilized version of the second equation of (2.5) and using the
second transmission condition of (2.6) this gives

(∇× u) · n = n · ∇Φ = −D̃Φ + (
1

2
I −K ′)[n · ∇Φ] = −

[
D̃ + (

1

2
I −K ′)V −1(

1

2
I −K)

]
Φ.

Hence we find

Φ = −
[
D̃ + (

1

2
I −K ′)V −1(

1

2
I −K)

]−1

[∇× u · n],
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and therefore we obtain the alternative representation〈(
1

µ
∇× û

)
× n,v

〉
Γ

= − 1

µ0

〈[
D̃ + (

1

2
I −K ′)V −1(

1

2
I −K)

]−1

Tnû, Tnv

〉
Γ

. (2.10)

Unifying (2.8) and (2.10) we finally write for the coupling term〈(
1

µ
∇× û

)
× n,v

〉
Γ

= − 1

µ0

〈BTnû, Tnv〉Γ ,

where B : H−1/2(Γ)→ H1/2(Γ) is defined by

B = V + (
1

2
I +K)D̃−1(

1

2
I +K ′) =

[
D̃ + (

1

2
I −K ′)V −1(

1

2
I −K)

]−1

. (2.11)

By using the mapping properties of all boundary integral operators we conclude

〈Bη, η〉Γ ≥ cB1 ‖η‖2
H−1/2(Γ), ‖Bη‖H1/2(Γ) ≤ cB2 ‖η‖H−1/2(Γ) for all η ∈ H−1/2(Γ). (2.12)

Now we are in a position to introduce the variational formulation of the transmission
problem (1.1)–(1.3).

Problem 2.1 Find û ∈ H1(0, T ;H(curl; Ω)) such that for all test functions v ∈ H(curl; Ω)
and almost all t ∈ (0, T ) there holds

0 =

(
σ
∂

∂t
û(t),v

)
+ κ
(
σû(t),v

)
+

(
1

µ
∇× û(t),∇× v

)
(2.13)

−
(
σw(t)× (∇× û(t)),v

)
−
(

σRf(t)

1 + se2κt|∇ × û(t)|2
∇× û(t),v

)
+

1

µ0

〈BTnû(t), Tnv〉Γ

together with the initial condition û(0) = u0.

Using the following definitions

〈A(t)u,v〉 :=

(
1

µ
∇× u,∇× v

)
−
(
σw(t)× (∇× u),v

)
+ κ
(
σu,v

)
,

〈Anl(u),v〉 :=

(
σRf(t)

1 + se2κt|∇ × u|2
∇× u,v

)
,

〈S(t)u,v〉 := 〈A(t)u−Anl(u) +
1

µ0

T ′nBTnu,v〉 (2.14)

for all u,v ∈ H(curl; Ω), we can reformulate Problem 2.1 in the following way:

Problem 2.2 Find û ∈ H1(0, T ;H(curl; Ω)) such that for almost all t ∈ (0, T ) there holds

σ
d

dt
û(t) + S(t)û(t) = 0

together with the initial condition û(0) = u0.
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3 Well–posedness of the coupled formulation

For the subsequent analysis, we apply the following result on nonlinear evolution problems,
cf. [25, Theorem 30.A].

Theorem 3.1 Let V ⊂ H ⊂ V ∗ be an evolution triple with dim V =∞. Let 0 < T <∞,
and let the following assumptions to be satisfied:

(a) For each t ∈ (0, T ), the operator S(t) : V → V ∗ is monotone and hemicontinuous.

(b) For each t ∈ (0, T ), the operator S(t) is coercive, i.e., there exist constants M > 0
and Λ ≥ 0 such that

〈S(t)v, v〉V ∗×V ≥M ‖v‖2
V − Λ for all v ∈ V.

(c) There exist a nonnegative function K1 ∈ L2(0, T ) and a constant K2 > 0 such that

‖S(t)v‖V ∗ ≤ K1(t) +K2 ‖v‖V for all v ∈ V, t ∈ (0, T ).

(d) The function t 7→ S(t) is weakly measurable, i.e., the function t 7→ 〈S(t)u, v〉 is
measurable on (0, T ) for all u, v ∈ V .

(e) Let u0 ∈ H be given.

Then there exists a unique solution to the problem:

Find u ∈ {v ∈ L2(0, T ;V ) | ∃v′ ∈ L2(0, T ;V ∗)} which fulfils

d

dt
u(t) + S(t)u(t) = 0 for almost all t ∈ (0, T ), u(0) = u0.

Although we will not give all details on the application of Theorem 3.1, we will sketch two
important properties, Lipschitz continuity and strong monotonicity.

Lemma 3.2 Assume f(t) ∈ L∞(Ω), w(t) ∈ [L∞(Ω)]3 for all t ∈ (0, T ). The operator S(t)
as defined in (2.14) is Lipschitz continuous, i.e. for all u1,u2,v ∈ H(curl; Ω) and for all
κ ∈ R+, t ∈ (0, T ) there holds〈

S(t)u1 − S(t)u2,v
〉
≤ cSL ‖u1 − u2‖H(curl;Ω)‖v‖H(curl;Ω) (3.1)

with

cSL := max

{
1

µmin

, σmax sup
t∈(0,T )

‖w(t)‖L∞(Ω), σmaxκ,
cB2
µ0

c2
T , 3σmaxR sup

t∈(0,T )

‖f(t)‖L∞(Ω)

}
.
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Proof. By using (2.12) and (2.9) we first have for all u,v ∈ H(curl; Ω), t ∈ (0, T ),〈[
A(t) +

1

µ0

T ′nBTn
]

u,v

〉
=

(
1

µ
∇× u,∇× v

)
−
(
σw(t)× (∇× u),v

)
+ κ
(
σu,v

)
+

1

µ0

〈
BTnu, Tnv

〉
Γ

≤ 1

µmin

‖∇ × u‖L2(Ω)‖∇ × v‖L2(Ω) + σmax‖w(t)‖L∞(Ω)‖∇ × u‖L2(Ω)‖v‖L2(Ω)

+σmaxκ ‖u‖L2(Ω)‖v‖L2(Ω) +
cB2
µ0

‖Tnu‖H−1/2(Γ)‖Tnv‖H−1/2(Γ)

≤ max

{
1

µmin

, σmax‖w(t)‖L∞(Ω), σmaxκ,
cB2
µ0

c2
T

}
‖u‖H(curl;Ω)‖v‖H(curl;Ω).

It remains to consider the nonlinear term Anl. For %, τ ∈ R+ we define

ψ%(τ) :=
1

1 + % τ 2
, thus |ψ%(τ)| ≤ 1.

The Lipschitz continuity

|ψ%(τ1) τ1 − ψ%(τ2) τ2| ≤ |τ1 − τ2| for all τ1, τ2, % ∈ R+ (3.2)

follows from ∣∣∣∣ ddτ
(

τ

1 + % τ 2

)∣∣∣∣ ≤ 1.

For s, t ∈ R+ we define % := se2κt and set ũi = ∇× ui to obtain(
∇× u1

1 + se2κt|∇ × u1|2
− ∇× u2

1 + se2κt|∇ × u2|2
,v

)
=

(
ũ1

1 + %|ũ1|2
− ũ2

1 + %|ũ2|2
,v

)
=
(
ψ%(|ũ1|)ũ1 − ψ%(|ũ2|)ũ2,v

)
=
(
ψ%(|ũ1|)(ũ1 − ũ2),v

)
+
([
ψ%(|ũ1|)− ψ%(|ũ2|)

]
ũ2,v

)
=

∫
Ω

ψ%(|ũ1|)(ũ1 − ũ2) · v dx+

∫
Ω

[
ψ%(|ũ1|)− ψ%(|ũ2|)

]
ũ2 · v dx

≤
∫

Ω

|ψ%(|ũ1|)| |ũ1 − ũ2| |v| dx+

∫
Ω

|ψ%(|ũ1|)− ψ%(|ũ2|)| |ũ2| |v| dx

≤ ‖ũ1 − ũ2‖L2(Ω)‖v‖L2(Ω) +

∫
Ω

|ψ%(|ũ1|)|
[
|ũ2| − |ũ1|

]
|v| dx

+

∫
Ω

[
|ψ%(|ũ1|)| |ũ1| − |ψ%(|ũ2|)| |ũ2|

]
|v| dx

(3.2)

≤ ‖ũ1 − ũ2‖L2(Ω)‖v‖L2(Ω) +
∥∥|ũ1| − |ũ2|

∥∥
L2(Ω)
‖v‖L2(Ω) +

∥∥|ũ1| − |ũ2|
∥∥
L2(Ω)
‖v‖L2(Ω).
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By using the triangle inequality
∣∣|ũ1| − |ũ2|

∣∣ ≤ |ũ1 − ũ2| we finally obtain

〈Anl(u1)− Anl(u2),v〉 ≤ 3σmaxR ‖f(t)‖L∞(Ω)‖∇ × (u1 − u2)‖L2(Ω)‖v‖L2(Ω), (3.3)

which together with the boundedness of the linear part concludes the proof.

Let us finally consider the strong monotonicity of S.

Lemma 3.3 Let S(t) be given as in (2.14), and f(t) ∈ L∞(Ω), w(t) ∈ [L∞(Ω)]3 for all
t ∈ (0, T ). Let κ ∈ R+ be chosen such that

κ ≥ µmaxσmax sup
t∈(0,T )

[
‖w(t)‖L∞(Ω) + 3R‖f(t)‖L∞(Ω)

]2

(3.4)

is satisfied. Then there holds the monotonicity estimate

〈S(t)u− S(t)v,u− v〉 ≥ cM ‖u− v‖2
H(curl;Ω) for all u,v ∈ H(curl; Ω), t ∈ (0, T ) (3.5)

with some positive constant cM .

Proof. By neglecting the positive definite operator B (see (2.12)), and by using the
Lipschitz continuity (3.3), we have

〈S(t)u− S(t)v,u− v〉 ≥ 〈A(t)(u− v)−Anl(u) +Anl(v),u− v〉

=
( 1

µ
∇× (u− v),∇× (u− v)

)
−
(
σw(t)× (∇× (u− v)),u− v

)
+ κ
(
σ(u− v),u− v

)
−
(
σf(t)R

[
∇× u

1 + se2κt|∇ × u|2
− ∇× v

1 + se2κt|∇ × v|2

]
,u− v

)
≥ 1

µmax

‖∇ × (u− v)‖2
L2(Ω) + κ‖

√
σ(u− v)‖2

L2(Ω)

−
√
σmax sup

t∈(0,T )

[
‖w(t)‖L∞(Ω) + 3R‖f(t)‖L∞(Ω)

]
‖∇ × (u− v)‖L2(Ω)‖

√
σ(u− v)‖L2(Ω)

≥ 1

µmax

‖∇ × (u− v)‖2
L2(Ω) + κ‖

√
σ(u− v)‖2

L2(Ω)

−1

2

√
σmax sup

t∈(0,T )

[
‖w(t)‖L∞(Ω) + 3R‖f(t)‖L∞(Ω)

]
·
[
γ‖∇ × (u− v)‖2

L2(Ω) +
1

γ
‖
√
σ(u− v)‖2

L2(Ω)

]
with γ > 0. By setting

γ =
1

µmax
√
σmax sup

t∈(0,T )

[
‖w(t)‖L∞(Ω) + 3R‖f(t)‖L∞(Ω)

]
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for

κ ≥ µmaxσmax sup
t∈(0,T )

[
‖w(t)‖L∞(Ω) + 3R‖f(t)‖L∞(Ω)

]2

we obtain

〈S(t)u− S(t)v,u− v〉 ≥ 1

2µmax

‖∇ × (u− v)‖2
L2(Ω) +

κ

2
‖
√
σ(u− v)‖2

L2(Ω)

≥ cM‖u− v‖2
H(curl;Ω) (3.6)

with the positive constant

cM := min

[
1

2µmax

;
µmaxσmax

2σmin
sup
t∈(0,T )

[
‖w(t)‖L∞(Ω) + 3R‖f(t)‖L∞(Ω)

]2
]
.

All other assumptions of Theorem 3.1 follow in a similar way, so that we can conclude
unique solvability of Problem 2.2.

4 Discretisation of the coupled problem

In this section we describe the spatial and temporal discretization of Problem 2.2. First,
let B̃ some bounded and at least positive semi–definite approximation of B which results
from the approximate solution of the involved boundary integral equations. Specific ap-
proximations will be given in Sect. 4.3. Such an approximation implies an approximate
operator

S̃(t) := A(t)−Anl(·) +
1

µ0

T ′nB̃Tn.

Instead of Problem 2.2 we now consider a perturbed evolution equation.

Problem 4.1 Find ũ ∈ H1(0, T ;H(curl; Ω)) such that for almost all t ∈ (0, T ) there holds

σ
d

dt
ũ + S̃(t)ũ = 0, ũ(0) = u0.

As for S we can prove all required assumptions of Theorem 3.1 for the perturbed operator
S̃, in particular, the Lipschitz continuity (3.1) (with a Lipschitz constant cS̃L) and the
monotonicity estimate (3.5) (with the same constant cM) remain true. Hence we conclude
the well–posedness of Problem 4.1. It remains to estimate the error due to the use of the
approximation B̃.

Lemma 4.1 Let B̃ : H−1/2(Γ) → H1/2(Γ) be some bounded and positive semi–definite
approximation of B. Let û, ũ ∈ L2(0, T ;H(curl; Ω)) be the unique solutions of Problems 2.2
and 4.1, respectively. Then there hold the error estimates

‖
√
σ[û(T )− ũ(T )]‖2

L2(Ω) + cM‖û− ũ‖2
L2(0,T ;H(curl;Ω)) ≤

c2
T

cMµ2
0

‖(B̃ − B)Tnû‖2
L2(0,T ;H1/2(Γ))
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and

‖σ d
dt

[û− ũ]‖L2(0,T ;[H(curl;Ω)]∗) ≤
cT
µ0

(
1 +

cS̃L
cM

)
‖(B − B̃)Tnû‖L2(0,T ;H1/2(Γ)).

Proof. From Problems 2.2 and 4.1 we obtain

σ
d

dt
(û− ũ) +A(t)(û− ũ) +

1

µ0

T ′nB̃Tn[û− ũ]−Anl(û) +Anl(ũ) =
1

µ0

T ′n[B̃ − B]Tnû,

and by using the monotonicity of S̃ and the continuity of Tn we conclude, for any γ ∈ R+,

1

2

d

dt
‖
√
σ(û− ũ)‖2

L2(Ω) + cM‖û− ũ‖2
H(curl;Ω) ≤

1

µ0

〈[B̃ − B]Tnû, Tn(û− ũ)〉Γ

≤ 1

µ0

‖(B̃ − B)Tnû‖H1/2(Γ)‖Tn(û− ũ)‖H−1/2(Γ)

≤ cT
µ0

‖(B̃ − B)Tnû‖H1/2(Γ)‖û− ũ‖H(curl;Ω)

≤ 1

2

cT
µ0

[
1

γ
‖(B̃ − B)Tnû‖2

H1/2(Γ) + γ‖û− ũ‖2
H(curl;Ω)

]
.

In particular for γ = cMµ0/cT we then obtain

d

dt
‖
√
σ(û− ũ)‖2

L2(Ω) + cM‖û− ũ‖2
H(curl;Ω) ≤

c2
T

cMµ2
0

‖(B̃ − B)Tnû‖2
H1/2(Γ).

Integration in time gives the first estimate, where we use û(0) = ũ(0) = u0.
On the other hand, we have

σ
d

dt
(û− ũ) = S̃(t)ũ− S(t)û.

For v ∈ H(curl; Ω) we then conclude

〈σ d
dt

(û− ũ),v〉 = 〈S̃(t)ũ− S(t)û,v〉 = 〈S̃(t)ũ− S̃(t)û,v〉+ 〈S̃(t)û− S(t)û,v〉

≤ cS̃L ‖ũ− û‖H(curl;Ω)‖v‖H(curl;Ω) +
1

µ0

‖(B − B̃)Tnû‖H1/2(Γ)‖Tnv‖H−1/2(Γ).

Using (2.9), dividing by ‖v‖H(curl;Ω), and taking the supremum over all v ∈ H(curl; Ω),
v 6≡ 0, this gives

‖σ d
dt

(û− ũ)‖[H(curl;Ω)]∗ ≤ cS̃L‖ũ− û‖H(curl;Ω) +
cT
µ0

‖(B − B̃)Tnû‖H1/2(Γ).

Integration in time and using the first estimate gives the second result.
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4.1 Spatial discretisation

Next we discuss the spatial discretization of the perturbed evolution Problem 4.1 where we
start with the definition of appropriate discrete spaces. For the discretized vector potential
in the interior domain Ω we use Xh ⊂ H(curl; Ω) which consists of lowest order Nédélec
elements.

Problem 4.2 Find ũh ∈ H1(0, T ;Xh) such that for almost all t ∈ (0, T ) and all vh ∈ Xh

there holds 〈
σ
d

dt
ũh(t),vh

〉
+
〈
S̃(t)ũh(t),vh

〉
= 0,

(
ũh(0)− u0,vh

)
= 0.

Theorem 4.2 Let ũ ∈ H1(0, T ;H(curl; Ω)) and ũh ∈ H1(0, T ;Xh) be the unique solutions
of Problems 4.1 and 4.2, respectively. Let πhû ∈ Xh be some approximation of the solution
û ∈ H(curl; Ω) of Problem 2.2. Then there holds the error estimate

‖
√
σ(û(T )− ũh(T ))‖2

L2(Ω) + cM‖û− ũh‖2
L2(0,T ;H(curl;Ω))

≤ c
[
‖
√
σ(û(T )− πhû(T ))‖2

L2(Ω) + ‖
√
σ(πhu0 − u0)‖2

L2(Ω) + ‖
√
σ(u0 − ũh(0))‖2

L2(Ω)

+‖πhû− û‖2
L2(0,T ;H(curl;Ω)) + ‖σ d

dt
(πhû− û)‖2

L2(0,T ;[H(curl;Ω)]∗)

+‖(B − B̃)Tnû‖L2(0,T ;H1/2(Γ))

]
.

Proof. Since Xh ⊂ H(curl; Ω), we first obtain the Galerkin orthogonality〈
σ
d

dt
(ũ− ũh),vh

〉
+
〈
S̃(t)ũ− S̃(t)ũh,vh

〉
= 0 for all vh ∈ Xh,

or equivalently〈
σ
d

dt
(πhû−ũh),vh

〉
+
〈
S̃(t)πhû−S̃(t)ũh,vh

〉
=
〈
S̃(t)πhû−S̃(t)ũ,vh

〉
+
〈
σ
d

dt
(πhû−ũ),vh

〉
for all vh ∈ Xh. In particular for vh = πhû − ũh we conclude, by using the monotonicity
and the Lipschitz continuity of S̃,

1

2

d

dt
‖
√
σ(πhû− ũh)‖2

L2(Ω) + cM‖πhû− ũh‖2
H(curl;Ω)

≤ cS̃L ‖πhû− ũ‖H(curl;Ω)‖πhû− ũh‖H(curl;Ω)

+‖σ d
dt

(πhû− ũ)‖[H(curl;Ω)]∗‖πhû− ũh‖H(curl;Ω)

≤ 1

2
cS̃L

[
1

γ1

‖πhû− ũ‖2
H(curl;Ω) + γ1‖πhû− ũh‖2

H(curl;Ω)

]
+

1

2

[
1

γ2

‖σ d
dt

(πhû− ũ)‖2
[H(curl;Ω)]∗ + γ2‖πhû− ũh‖2

H(curl;Ω)

]
14



for some positive constants γ1, γ2. In particular for γ1 = 1
2
cM/c

S̃
L and γ2 = 1

2
cM we obtain

d

dt
‖
√
σ(πhû− ũh)‖2

L2(Ω) + cM‖πhû− ũh‖2
H(curl;Ω)

≤ 2
[cS̃L]2

cM
‖πhû− ũ‖2

H(curl;Ω) +
2

cM
‖σ d
dt

(πhû− ũ)‖2
[H(curl;Ω)]∗ .

Integration in time gives

‖
√
σ(πhû(T )− ũh(T ))‖2

L2(Ω) + cM‖πhû− ũh‖2
L2(0,T ;H(curl;Ω))

≤ ‖
√
σ(πhû(0)− ũh(0))‖2

L2(Ω) + 2
[cS̃L]2

cM
‖πhû− ũ‖2

L2(0,T ;H(curl;Ω))

+
2

cM
‖σ d
dt

(πhû− ũ)‖2
L2(0,T ;[H(curl;Ω)]∗).

Hence we find, by using the triangle inequality,

‖
√
σ(û(T )− ũh(T ))‖2

L2(Ω) + cM‖û− ũh‖2
L2(0,T ;H(curl;Ω))

≤ 2
(
‖
√
σ(û(T )− πhû(T ))‖2

L2(Ω) + ‖
√
σ(πhû(T )− ũh(T ))‖2

L2(Ω)

)
+2cM

(
‖û− πhû‖2

L2(0,T ;H(curl;Ω)) + ‖πhû− ũh‖2
L2(0,T ;H(curl;Ω))

)
≤ 2‖

√
σ(û(T )− πhû(T ))‖2

L2(Ω) + 2cM‖û− πhû‖2
L2(0,T ;H(curl;Ω))

+2‖
√
σ(πhû(0)− ũh(0))‖2

L2(Ω) + 4
[cS̃L]2

cM
‖πhû− ũ‖2

L2(0,T ;H(curl;Ω))

+
4

cM
‖σ d
dt

(πhû− ũ)‖2
L2(0,T ;[H(curl;Ω)]∗).

Again by using the triangle inequality we further conclude

‖
√
σ(û(T )− ũh(T ))‖2

L2(Ω) + cM‖û− ũh‖2
L2(0,T ;H(curl;Ω))

≤ 2‖
√
σ(û(T )− πhû(T ))‖2

L2(Ω) + 2cM‖û− πhû‖2
L2(0,T ;H(curl;Ω))

+4‖
√
σ(πhû(0)− u0)‖2

L2(Ω) + 4‖
√
σ(u0 − ũh(0))‖2

L2(Ω)

+8
[cS̃L]2

cM
‖πhû− û‖2

L2(0,T ;H(curl;Ω)) + 8
[cS̃L]2

cM
‖û− ũ‖2

L2(0,T ;H(curl;Ω))

+
8

cM
‖σ d
dt

(πhû− û)‖2
L2(0,T ;[H(curl;Ω)]∗) +

8

cM
‖σ d
dt

(û− ũ)‖2
L2(0,T ;[H(curl;Ω)]∗)

and the assertion follows by using Lemma 4.1.
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4.2 Time discretization

We proceed with the time discretization of the semi–discrete Problem 4.2 which was to
find ũh ∈ H1(0, T ;Xh) such that for almost all t ∈ (0, T ) and all vh ∈ Xh there holds〈

σ
d

dt
ũh(t),vh

〉
+
〈
S̃(t)ũh(t),vh

〉
= 0,

(
ũh(0)− u0,vh

)
= 0.

For simplicity we only consider the implicit Euler scheme with a constant time step τ = T
M

,
and with nodes tm = mτ , m = 0, . . . ,M . If we evaluate a function u at time tm we write
um. The discretized time derivative is ∆τv

m := 1
τ
[vm − vm−1], m = 1, . . . ,M . Hence we

obtain the following fully discretized problem.

Problem 4.3 Given ũ0
h, find for all m = 1, . . . ,M ũmh ∈ Xh such that〈

σ
ũmh − ũm−1

h

τ
,vh

〉
+ 〈S̃(tm)ũmh ,vh〉 = 0 for all vh ∈ Xh.

The well–posedness of the fully discretized Problem 4.3 follows from the main theorem
on strongly monotone operators, see, e.g., [25]. In addition we can prove the following
stability estimate.

Lemma 4.3 Assume f(t) ∈ L∞(Ω), w(t) ∈ [L∞(Ω)]3 for all t ∈ (0, T ). Let κ ∈ R+ be
chosen according to (3.4). For the solution of the fully discrete Problem 4.3 there holds

‖
√
σũMh ‖2

L2(Ω) +
τ

µmax

M∑
m=1

‖∇ × ũmh ‖2
L2(Ω) ≤ ‖

√
σũ0

h‖2
L2(Ω).

Proof. Chosing τ ũmh as a test function in Problem 4.3 this gives

〈σũmh + τA(tm)ũmh − τAnl(ũmh ) +
τ

µ0

T ′nB̃Tnũmh , ũmh 〉 = 〈σũm−1
h , ũmh 〉,

which results in

‖
√
σũmh ‖2

L2(Ω) +
τ

µmax

‖∇ × ũmh ‖2
L2(Ω) + κτ‖

√
σũmh ‖2

L2(Ω)

≤ ‖
√
σũm−1

h ‖L2(Ω)‖
√
σũmh ‖L2(Ω) + τ

(
σw(tm)× (∇× ũmh ), ũmh

)
+τ

(
σ

Rf(tm)

1 + %e2κtm|∇ × ũmh |2
∇× ũmh , ũ

m
h

)
≤ 1

2
‖
√
σũm−1

h ‖2
L2(Ω) +

1

2
‖
√
σũmh ‖2

L2(Ω)

+τ
√
σmax sup

t∈(0,T )

(
‖w(t)‖L∞(Ω) +R‖f(t)‖L∞(Ω)

)
‖∇ × ũmh ‖L2(Ω)‖

√
σũmh ‖L2(Ω)

≤ 1

2
‖
√
σũm−1

h ‖2
L2(Ω) +

1

2
‖
√
σũmh ‖2

L2(Ω)

+
1

2
τ
√
σmax sup

t∈(0,T )

(
‖w(t)‖L∞(Ω) +R‖f(t)‖L∞(Ω)

)[
γ‖∇ × ũmh ‖2

L2(Ω) +
1

γ
‖
√
σũmh ‖2

L2(Ω)

]
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for some positive constant γ. In particular for

γ =
1

µmax
√
σmax sup

t∈(0,T )

(
‖w(t)‖L∞(Ω) +R‖f(t)‖L∞(Ω)

)
we conclude

1

2
‖
√
σũmh ‖2

L2(Ω) +
τ

2µmax

‖∇ × ũmh ‖2
L2(Ω)

≤ 1

2
‖
√
σũm−1

h ‖2
L2(Ω)

+τ

[
1

2
µmaxσmax sup

t∈(0,T )

(
‖w(t)‖L∞(Ω) +R‖f(t)‖L∞(Ω)

)2

− κ

]
‖
√
σũmh ‖2

L2(Ω)

≤ 1

2
‖
√
σũm−1

h ‖2
L2(Ω)

if we chose κ according to (3.4). Hence we obtain

‖
√
σũmh ‖2

L2(Ω) +
τ

µmax

‖∇ × ũmh ‖2
L2(Ω) ≤ ‖

√
σũm−1

h ‖2
L2(Ω)

and summation over m = 1, . . . ,M gives the desired estimate.

4.3 Boundary element approximations

In this section we will introduce suitable approximations B̃ of the operator B as defined
in (2.11). Using the first representation in (2.11), the application of B for a given ψ ∈
H−1/2(Γ) reads

Bψ = V ψ + (
1

2
I +K)D̃−1(

1

2
I +K ′)ψ = V ψ + (

1

2
I +K)w,

where w = D̃−1(1
2
I +K ′)ψ ∈ H1/2(Γ) is the unique solution of the variational problem

〈D̃w, v〉Γ = 〈(1

2
I +K ′)ψ, v〉Γ for all v ∈ H1/2(Γ). (4.1)

Let S1
h(Γ) ⊂ H1/2(Γ) be some boundary element space of, e.g., piecewise linear basis

functions, which are defined with respect to an admissible and globally quasi–uniform
boundary element mesh. From a theoretical point of view it is not required that the
boundary element mesh matches the trace of the finite element mesh, but from a practical
point of view such a matching will simplify the implementation.
The Galerkin discretization of the variational problem (4.1) is to find wh ∈ S1

h(Γ) such that

〈D̃wh, vh〉Γ = 〈(1

2
I +K ′)ψ, vh〉Γ for all vh ∈ S1

h(Γ). (4.2)

17



Since the stabilized hypersingular boundary integral operator D̃ : H1/2(Γ) → H−1/2(Γ) is
H1/2(Γ)–elliptic, stability and quasi–optimality follow, i.e.,

‖wh‖H1/2(Γ) ≤ c1‖ψ‖H−1/2(Γ), ‖w − wh‖H1/2(Γ) ≤ c inf
vh∈S1

h(Γ)
‖w − vh‖H1/2(Γ).

Hence we can define an approximate operator B̃ by considering

B̃ψ := V ψ + (
1

2
I +K)wh. (4.3)

From the properties of the Galerkin approximation wh we easily conclude the boundedness
of B̃, as well as an approximation estimate, see, e.g., [22], i.e.,

‖B̃ψ‖H1/2(Γ) ≤ c̃1‖ψ‖H−1/2(Γ), ‖(B − B̃)ψ‖H1/2(Γ) ≤ c̃2 inf
vh∈S1

h(Γ)
‖w − vh‖H1/2(Γ).

Moreover, B̃ : H−1/2(Γ) → H1/2(Γ) is H−1/2(Γ)–elliptic. Hence we conclude, that (4.3)
defines an admissible approximation of B.
However, the use of the approximation (4.3) results in the Galerkin discretization of bound-
ary integral operators by using boundary traces of lowest order Nédélec elements. From a
practical point of view, this may become rather cumbersome. Hence we are interested in
a formulation, where the finite and boundary element basis functions are only linked via a
generalized mass matrix. For this we consider the second representation of B as given in
(2.11). For a given ψ ∈ H−1/2(Γ), the application of B reads

Bψ =
[
D̃ + (

1

2
I −K ′)V −1(

1

2
I −K)

]−1

ψ =: w,

where w ∈ H1/2(Γ) is the unique solution of the variational problem

〈[D̃ + (
1

2
I −K ′)V −1(

1

2
I −K)]w, v〉Γ = 〈ψ, v〉Γ for all v ∈ H1/2(Γ).

By introducing θ := V −1(1
2
I −K)w ∈ H−1/2(Γ) this is equivalent to a variational problem

to find (w, θ) ∈ H1/2(Γ)×H−1/2(Γ) such that

〈D̃w, v〉Γ + 〈(1

2
I −K ′)θ, v〉Γ = 〈ψ, v〉Γ, 〈V θ, η〉Γ − 〈(

1

2
I −K)w, η〉Γ = 0 (4.4)

is satisfied for all (v, η) ∈ H1/2(Γ) × H−1/2(Γ). In addition to S1
h(Γ) ⊂ H1/2(Γ) we now

consider a second boundary element space S0
h(Γ) ⊂ H−1/2(Γ) of, e.g., piecewise constant

basis functions, which, for convenience, are defined with respect to the same boundary
element mesh as S1

h(Γ). The Galerkin discretization of the variational problem (4.4) is to
find (wh, θh) ∈ S1

h(Γ)× S0
h(Γ) such that

〈D̃wh, vh〉Γ + 〈(1

2
I −K ′)θh, vh〉Γ = 〈ψ, vh〉Γ, 〈V θh, ηh〉Γ − 〈(

1

2
I −K)wh, ηh〉Γ = 0 (4.5)
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is satisfied for all (vh, ηh) ∈ S1
h(Γ) × S0

h(Γ). The Galerkin solution wh finally implies the
approximation

B̃ψ := wh. (4.6)

Using standard arguments, see, e.g., [22], we can prove boundedness of B̃, as well as an
approximation property, i.e.,

‖B̃ψ‖H1/2(Γ) ≤ c1‖ψ‖H−1/2(Γ),

‖(B − B̃)ψ‖H1/2(Γ) ≤ c2

{
inf

vh∈S1
h(Γ)
‖w − vh‖H1/2(Γ) + inf

ηh∈S0
h(Γ)
‖θ − ηh‖H−1/2(Γ)

}
.

Note that B̃ : H1/2(Γ) → H−1/2(Γ) may fail to be H1/2(Γ)–elliptic, but B̃ is H1/2(Γ)–
semi–elliptic. This is due to the mixed approximation scheme as used in the definition
(4.6). As in mixed finite element methods, stability would require an appropriate inf–sup
condition. But as seen in the proof of the monotonicity estimate (3.5), semi–ellipticity of

B̃ is sufficient. Hence we conclude, that (4.6) also defines an admissible approximation.

4.4 Convergence results

To present a final convergence result for the solution of the fully discrete Problem 4.3 we
first cite an approximation property of the lowest order Nédélec ansatz space.

Theorem 4.4 [18, Theorem 5.41] Let Xh ⊂ H(curl; Ω) be the space of lowest order Nédélec
elements which is defined with respect to a regular and globally quasi uniform finite element
mesh. For u ∈ [H1(Ω)]3 and ∇ × u ∈ [H1(Ω)]3 let rhu ∈ Xh be the interpolation. Then
there holds the error estimate

‖u− rhu‖L2(Ω) + ‖∇ × (u− rhu)‖L2(Ω) ≤ c h
[
‖u‖H1(Ω) + ‖∇ × u‖H1(Ω)

]
. (4.7)

Next we define πhu ∈ Xh as the H(curl; Ω) projection of u ∈ H(curl; Ω). By using standard
techniques and (4.7) we conclude the error estimate

‖u− πhu‖L2(Ω) + ‖∇ × (u− πhu)‖L2(Ω) ≤ c h ‖u‖H1(curl;Ω) (4.8)

for u ∈ [H1(Ω)]3 and ∇× u ∈ [H1(Ω)]3 as well as the stability estimate

‖πhv‖H(curl;Ω) ≤ cπ ‖v‖H(curl;Ω) for all v ∈ H(curl; Ω). (4.9)

Now we are in the position to state the final convergence result.

Theorem 4.5 Let û ∈ L2(0, T ;H(curl; Ω)) and ũmh ∈ Xh for all m = 1, . . . ,M be the
unique solutions of Problem 2.2 and Problem 4.3, respectively. Assume

û ∈ L2(0, T ;H1(curl; Ω)) ∩ L∞(0, T ;H1(curl; Ω))
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and

d

dt
û,

d2

dt2
û ∈ L2(0, T ; [H(curl; Ω)]∗),

d

dt
û ∈ H1(curl,Ω), u0 ∈ H1(curl; Ω).

Then there holds the error estimate

‖ûM − ũMh ‖2
L2(Ω) + τ

M∑
m=1

‖ûm − ũmh ‖2
H(curl;Ω) ≤ c(û)

[
h2 + τ 2

]
.

Proof. The proof follows partly the lines of the proof of Theorem 4.2. We will use
the triangle inequality to estimate the error of an auxiliary approximation πhû

m and the
additional errors of the time discretization and the approximation of S̃ on the discrete level.
We start investigating the latter. We substract the variational formulation of Problem 4.3
from Problem 4.1 at time t = tm and obtain〈

σ
d

dt
ũm + S̃(tm)ũm,vh

〉
=

〈
σ

ũmh − ũm−1
h

τ
+ S̃(tm)ũmh ,vh

〉
for all vh ∈ Xh,

or equivalently

〈σ (πhû
m − ũmh ) ,vh〉+ τ

〈
S̃(tm)πhû

m − S̃(tm)ũmh ,vh

〉
(4.10)

=
〈
σ
(
πhû

m−1 − ũm−1
h )

)
,vh
〉︸ ︷︷ ︸

=:A

+

〈
σ
[
πhû

m − πhûm−1 − τ d
dt

ũ(tm)
]
,vh

〉
︸ ︷︷ ︸

=:B

+τ
〈
S̃(tm)πhû

m − S̃(tm)πhũ
m,vh

〉
︸ ︷︷ ︸

=:C

+ τ
〈
S̃(tm)πhũ

m − S̃(tm)ũm,vh

〉
︸ ︷︷ ︸

=:D

.

We set vh = ψmh := πhû
m−ũmh and estimate the different terms of the error equation (4.10).

The monotonicity of S̃ gives for the left hand side terms〈
σ (πhû

m − ũmh ) + τ
(
S̃(tm)πhû

m − S̃(tm)ũmh

)
, πhû

m − ũmh

〉
≥ ‖
√
σψmh ‖2

L2(Ω) + τcM‖ψmh ‖2
H(curl;Ω).

The first right hand side term of (4.10) can be estimated as

A =
〈
σψm−1

h , ψmh
〉
≤ ‖
√
σψm−1

h ‖L2(Ω)‖
√
σψmh ‖L2(Ω) ≤

1

2
‖
√
σψm−1

h ‖2
L2(Ω) +

1

2
‖
√
σψmh ‖2

L2(Ω).

The Lipschitz continuity of S̃ and the continuity (4.9) of the projection πh enable the
estimate of the third right hand side term of (4.10):

C = τ
〈
S̃(tm)πhû

m − S̃(tm)πhũ
m, ψmh

〉
≤ τcS̃Lcπ‖πh(ûm − ũm)‖H(curl;Ω)‖ψmh ‖H(curl;Ω)

≤ 1

2
γ1τ‖ψmh ‖2

H(curl;Ω) + τ
(cS̃L)2c2

π

2γ1

‖ûm − ũm‖2
H(curl;Ω)
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for some positive constant γ1. The Lipschitz continuity of S̃ implies for the fourth right
hand side term of (4.10), and for some positive constant γ2:

D = τ
〈
S̃(tm)πhũ

m − S̃(tm)ũm, ψmh

〉
≤ τcS̃L‖πhũm − ũm‖H(curl;Ω)‖ψmh ‖H(curl;Ω)

≤ 1

2
γ2τ‖ψmh ‖2

H(curl;Ω) + τ
(cS̃L)2

2γ2

‖πhũm − ũm‖2
H(curl;Ω).

For the second right hand side term of (4.10) we obtain, for some positive constant γ3,

B =

〈
σ

[
πhû

m − πhûm−1 − τ d
dt

ũ(tm)

]
, ψmh

〉
≤ 1

2
τγ3‖ψmh ‖2

H(curl;Ω) +
1

2γ3τ

∥∥∥∥σ[πhûm − πhûm−1 − τ d
dt

ũ(tm)
]∥∥∥∥2

[H(curl;Ω)]∗
.

We now collect the estimates of (4.10), set γi = 1
3
cM , i = 1, . . . , 3, and rearrange the terms:

‖
√
σψmh ‖2

L2(Ω) + cMτ‖ψmh ‖2
H(curl;Ω) ≤ ‖

√
σψm−1

h ‖2
L2(Ω) +

3(cS̃L)2c2
π

cM
τ‖ûm − ũm‖2

H(curl;Ω)

+τ
3(cS̃L)2

cM
‖πhũm − ũm‖2

H(curl;Ω) +
3

cMτ

∥∥∥∥σ[πhûm − πhûm−1 − τ d
dt

ũ(tm)
]∥∥∥∥2

[H(curl;Ω)]∗
.

Summarizing over m = 1, . . . ,M leads to

‖
√
σ(πhû

M − ũMh )‖2
L2(Ω) + cMτ

M∑
m=1

‖πhûm − ũmh ‖2
H(curl;Ω) ≤ F

with

F := ‖
√
σ(πhû

0 − ũ0
h)‖2

L2(Ω) +
3(cS̃L)2c2

π

cM
τ

M∑
m=1

‖ûm − ũm‖2
H(curl;Ω)

+τ
3(cS̃L)2

cM

M∑
m=1

‖πhũm − ũm‖2
H(curl;Ω)

+
3

cMτ

M∑
m=1

∥∥∥∥σ[πhûm − πhûm−1 − τ d
dt

ũ(tm)
]∥∥∥∥2

[H(curl;Ω)]∗
.
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Inserting the approximation πhû
m and application of the triangle inequality yields for the

total error

‖
√
σ(ûM − ũMh )‖2

L2(Ω) + cMτ
M∑
m=1

‖ûm − ũmh ‖2
H(curl;Ω)

≤ 2
(
‖
√
σ
(
ûM − πhûM

)
‖2
L2(Ω) + ‖

√
σ
(
πhû

M − ũMh
)
‖2
L2(Ω)

)
+2cMτ

M∑
m=1

(
‖ûm − πhûm‖2

H(curl;Ω) + ‖πhûm − ũmh ‖2
H(curl;Ω)

)
≤ 2 ‖

√
σ
(
ûM − πhûM

)
‖2
L2(Ω) + 2cMτ

M∑
m=1

‖ûm − πhûm‖2
H(curl;Ω) + 2F. (4.11)

Based on the approximation properties (4.8) of the H(curl; Ω) projection πh, the following
terms of the right hand side of equation (4.11) can be bounded by

2‖
√
σ
(
ûM − πhûM

)
‖2
L2(Ω)+2cMτ

M∑
m=1

‖ûm − πhûm‖2
H(curl;Ω)+2‖

√
σ(πhû

0 − ũ0
h)‖2

L2(Ω)(4.12)

≤ ch2
(
‖û‖2

L∞(0,T ;H1(curl;Ω)) + ‖∇ × û‖2
L2(0,T ;H1(curl;Ω)) + ‖u0‖2

H1(curl;Ω)

)
.

For the last term of 2F we conclude, by using the triangle inequality and a Taylor expansion,
requiring û to be twice continuously differentiable in time,

6

cMτ

M∑
m=1

∥∥∥σ[πhûm − πhûm−1 − τ d
dt

ũ(tm))
]∥∥∥2

[H(curl;Ω)]∗

≤ 18

cMτ

M∑
m=1

∥∥∥σ[πhûm − πhûm−1 − ûm + ûm−1
]∥∥∥2

[H(curl;Ω)]∗
(4.13)

+
18

cMτ

M∑
m=1

(∥∥∥σ[ûm − ûm−1 − τ d
dt

û(tm))
]∥∥∥2

[H(curl;Ω)]∗

+τ 2
∥∥∥σ d
dt

(
û(tm)− ũ(tm)

)∥∥∥2

[H(curl;Ω)]∗

)
≤ c1h

2
∥∥∥ d
dt

û
∥∥∥2

L2(0,T ;H1(curl;Ω))
+ c2τ

2
∥∥∥ d2

dt2
û
∥∥∥2

L2(0,T ;[H(curl;Ω)]∗)

+c3τ
2
∥∥∥σ d
dt

(
û− ũ

)∥∥∥2

L2(0,T ;[H(curl;Ω)]∗)
.
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For the last step we applied the equivalence of the discrete L2 norm and the L2(0, T ) norm.
In particular, we have used the mean value theorem for the first term to estimate

1

τ

M∑
m=1

∥∥∥σ[πhûm − πhûm−1 − ûm + ûm−1
]∥∥∥2

[H(curl;Ω)]∗

=
1

τ

M∑
m=1

∥∥∥στ[πh( ûm − ûm−1

τ

)
− ûm − ûm−1

τ

]∥∥∥2

[H(curl;Ω)]∗

=
1

τ

M∑
m=1

∥∥∥στ[πh d
dt

û(ξ)− d

dt
û(ξ)

]∥∥∥2

[H(curl;Ω)]∗

≤ ch2

M∑
m=1

τ
∥∥∥ d
dt

û(ξ)
∥∥∥2

H1(curl;Ω)
.

For the second term we applied a Taylor expansion to obtain

1

τ

M∑
m=1

∥∥∥σ[ûm − ûm−1 − τ d
dt

û(tm))
]∥∥∥2

[H(curl;Ω)]∗
≤ σmaxτ

3

M∑
m=1

∥∥∥ d2

dt2
û(ξm)

∥∥∥2

[H(curl;Ω)]∗
.

Then Lemma 4.1 and the estimates of the BEM approximations in Subsect. 4.3 yield∥∥∥∥σ ddt [û− ũ]

∥∥∥∥
L2(0,T ;[H(curl;Ω)]∗)

≤ cT
µ0

(1 +
cS̃L
cM

) ‖(B − B̃)Tnû‖L2(0,T ;H1/2(Γ))

≤ c h ‖Tnû‖L2(0,T ;H
1/2
pw (Γ))

≤ c h ‖∇ × û‖L2(0,T ;H1(Ω)). (4.14)

The same kind of estimate holds true for the remaining part of the term 2F , i.e.

6
(cS̃L)2c2

π

cM
τ

M∑
m=1

[
c2
π‖ûm − ũm‖2

H(curl;Ω) + ‖πhũm − ũm‖2
H(curl;Ω)

]
≤ 6

(cS̃L)2c2
π

cM
τ

M∑
m=1

[
(c2
π + 2(1 + cπ)2)‖ûm − ũm‖2

H(curl;Ω) + ‖πhûm − ûm‖2
H(curl;Ω)

]
≤ c1 ‖(B − B̃)Tnû‖2

L2(0,T ;H1/2(Γ)) + c2 ‖πhû− û‖2
L2(0,T ;H(curl;Ω)) (4.15)

≤ c1 h
2 ‖Tnû‖L2(0,T ;H

1/2
pw (Γ))

+ c2 h
2 ‖û‖2

L2(0,T ;H1(curl;Ω))

≤ c h2 ‖û‖L2(0,T ;H1(curl;Ω)). (4.16)

Now the assertion follows after summarizing all previous estimates.
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5 Numerical examples

In this section we present some first numerical results in order to verify the applicability of
the presented FEM–BEM approach. We restrict ourselves to the simplified linear model,
i.e., we do not include the nonlinear saturation term Anl.
For the finite element discretization of the interior problem we use hexahedral finite ele-
ments with lowest order Nédélec basis functions. This implementation was done by using
the C++ library deal.II (see www.dealii.org). The boundary element approximation (4.6)
was realized by using a fast multipole boundary element method [21].

5.1 Simulation of current through a coil

As a first example we consider the current through a coil which is given as the cylindrical
interior domain

Ω =
{
x ∈ R3 | − 1.2 < x1 < 1.2, x2

2 + x2
3 < 0.36

}
and which is decomposed into 5120 hexahedral finite elements. This corresponds to 16544
degrees of freedom (DOF) of the finite element approximation. For the boundary element
approximation we use a conforming boundary mesh with 2304 triangles, i.e. 2304 DOF for
the flux θh, and 1154 related DOF for the potential wh, see (4.5).

Figure 5.1: (a) Hollow cylinder S (grey) in the interior domain Ω, (b) Slices for the
visualisation of the finite element solution. (Example 1)

In the hollow cylinder, i.e. in the coil, see Fig. 5.1,

S =
{
x ∈ R3 | − 0.5 < x1 < 0.5, 0.2 < x2

2 + x2
3 < 0.25

}
,

we prescribe the velocity field w = (0, x3,−x2)> and set w = 0 elsewhere. Moreover, we
set

µ(x) :=

{
1000 for x ∈ Ω,

1 else,
σ(x) :=


1000 for x ∈ S,
10−3 for x ∈ Ω \ S,
0 else.

The initial condition is given as u0 = (0, x3,−x2)>. The constant time step length is
chosen as τ = 0.01. For the visualisation of the finite element solution we use Tecplot
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360 to calculate the rotation. This allows to visualize the magnetic field B instead of the
potential u, see Fig. 5.2. Fig. 5.3 shows the component B1 of the magnetic field at different
slices in the interior domain as depicted in Fig. 5.1(b).

Figure 5.2: Magnetic field lines of the BEM solution in the plane x2 = 0 at timestep 240.
The coil S is marked by the rectangle. (Example 1)

We observe that the magnetic field points in one direction in the interior of the coil and
in the opposite direction parallel to the coil. Its magnitude decreases when the distance in
x1 direction to the coil increases. In particular, the magnetic field in the exterior behaves
like a dipole field as expected.

5.2 Simulation of the earth’s magnetic field without dynamo

The second example is a first step towards a simulation of the earth’s magnetic field. The
interior domain Ω = B(0, R) is a ball with radius R = 6.38 where we consider two different
meshes, see Table 5.1.

mesh DOF (FEM) finite elements DOF (BEM) boundary elements

coarse 87632 28672 1538 3072
fine 694432 229376 6146 12288

Table 5.1: Number of finite and boundary elements and degrees of freedom. (Example 2)

We prescribe the given velocity field w = (−x2, x1, 0)> in the spherical shell

S =

{
x ∈ R3 | 2 <

√
x2

1 + x2
2 + x2

3 < 5

}
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Figure 5.3: Magnetic field component B1 in the interior domain at slices (a) x1 = −1.2,
(b) x1 = −1, (c) x1 = −0.65, (d) x1 = −0.5, (e) x1 = −0.3, and (f) x1 = 0. Note that the
scale varies. (Example 1)

and set w = 0 elsewhere. Moreover, let

µ(x) :=
107

4π
and σ(x) :=

{
3 · 105 for |x| ≤ 5,

100 else.

The initial condition is u0 = (0, x3,−x2)>. Fig. 5.4 shows the magnetic field in a part of
the exterior domain when using the fine mesh. It looks almost like a dipole field. Although
an axisymmetric velocity field cannot generate an axisymmetric magnetic field (see, e.g.,
[17]) the solution shows the correct behaviour. The strength of the magnetic field decreases
in time. Additionally we made another test with the coarse mesh and a 100 times larger
velocity. The amplitude of the magnetic field decreases even faster in this setting (cf.
Fig. 5.4). We plot the L2 norm of the magnetic field in the interior domain for both
velocity fields.

6 Conclusions

In the present paper we have given a numerical analysis of a coupled finite and boundary
element formulation to model a kinematic dynamo in R3. While the analysis is given for the
nonlinear model, the numerical example only covers a simplified linear model. Although
the implementation can be extended to the nonlinear model straight forward, this would
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Figure 5.4: Example 2. (a) BEM solution on the fine mesh at timestep 240, (b) L2-norm
of the magnetic field on the coarse grid in the FEM domain for the given velocity field w
and the velocity field 100w. One timestep is 0.001.

require a more efficient solution approach for the linearized model, which is beyond the
scope of this paper.
The model as used in this paper is based on the knowledge of the given velocity field w.
A more general model will incorporate the Navier–Stokes equations to describe this velocity
field as an additional unknown. However, the solution of these direct problems may serve as
the basis of the inverse problem, i.e., the determination of the velocity field in the interior
domain from measurements on the boundary.
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